編輯推薦“圓錐的課件”這篇文章,相信您一定會喜歡。老師在上課前早早準(zhǔn)備好教案和課件,因此務(wù)必認(rèn)真編寫每個教案和課件。教案是實(shí)現(xiàn)培養(yǎng)復(fù)合型人才目標(biāo)的有效實(shí)踐。別錯過這篇美味的文字哦!
尊敬的各位評委老師,大家好!今天我說課的題目是《圓錐的體積》。
下面我將從說教材,學(xué)情、教學(xué)目標(biāo)、教法學(xué)法、教學(xué)過程、板書設(shè)計(jì)六個方面進(jìn)行說課。
《圓錐的體積》是在學(xué)生已經(jīng)掌握了圓柱體積的計(jì)算及其應(yīng)用和認(rèn)識了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識的最后一課時內(nèi)容。讓學(xué)生學(xué)好這一部分內(nèi)容,有利于進(jìn)一步發(fā)展學(xué)生的空間觀念,為進(jìn)一步解決一些實(shí)際問題打下基礎(chǔ)。
掌握學(xué)生的基本情況對于把握和處理教材具有重要作用,接下來我對學(xué)情進(jìn)行分析。六年級學(xué)生已有了一定的生活經(jīng)驗(yàn),對空間觀念也有了一定的了解。從一年級開始就認(rèn)識了立體圖形,五年級學(xué)習(xí)了長方體、正方體的體積,在前面剛學(xué)了圓柱的體積,在此基礎(chǔ)上學(xué)習(xí)圓錐的體積,學(xué)生很容易掌握,做到水到渠成。
根據(jù)教材的編排特點(diǎn),學(xué)生的認(rèn)知水平,及已有的生活經(jīng)驗(yàn),我制定了以下三個教學(xué)目標(biāo):
1.使學(xué)生理解和掌握圓錐體積的計(jì)算方法,并能運(yùn)用公式解決簡單的實(shí)際問題。
2.使學(xué)生在圓錐體積計(jì)算公式的推導(dǎo)過程中進(jìn)一步理解圓錐與圓柱的聯(lián)系,培養(yǎng)學(xué)生的推理思想。
3.使學(xué)生經(jīng)歷猜測、驗(yàn)證的數(shù)學(xué)發(fā)現(xiàn)過程,培養(yǎng)學(xué)生樂于學(xué)習(xí)、勇于探究的數(shù)學(xué)情感。
通過對教材和教學(xué)目標(biāo)的分析,我認(rèn)為本課的教學(xué)重點(diǎn)是利用圓錐體積公式解決實(shí)際問題,難點(diǎn)是掌握圓錐體積公式的推導(dǎo)過程。
本節(jié)課我將遵循“教為主導(dǎo),學(xué)為主體,實(shí)踐操作為主線”的教學(xué)原則,采用引導(dǎo)啟發(fā),合作交流和自主學(xué)習(xí)等教學(xué)方法。讓學(xué)生在動手操作、討論交流中理解知識,在多樣化的練習(xí)中鞏固知識。
為了有效的達(dá)成教學(xué)目標(biāo),我將從創(chuàng)設(shè)情境、引入新課,自主探究、掌握新知,鞏固練習(xí)、拓展延伸,回顧梳理、課堂小結(jié)四個環(huán)節(jié)展開教學(xué):
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課
課前我將創(chuàng)設(shè)冰淇淋大賣場的情景,出示圓錐形的兩個冰淇淋圖片:圖片1的冰淇淋底面積較小,高一些,圖片2的冰淇淋底面積較大,矮一些。讓學(xué)生判斷哪個冰淇淋大?選擇對的同學(xué)可以免費(fèi)品嘗一根冰淇淋。讓學(xué)生猜一猜,激發(fā)學(xué)生的興趣,引出“底面積”和“高”兩個關(guān)鍵量。接著引導(dǎo)學(xué)生思考:要想知道哪個冰淇淋大其實(shí)就是求它們的體積,自然引出本節(jié)課的主題,揭示并板書課題:《圓錐的體積》。以生活中學(xué)生感興趣的事物設(shè)置情景,激發(fā)學(xué)生好奇心和求知欲,快速切入正題。
第二環(huán)節(jié):自主探究,掌握新知
1、大膽猜測,引導(dǎo)分析
首先讓學(xué)生回顧已經(jīng)學(xué)過的長方體、正方體、圓柱的體積,提出質(zhì)疑圓錐的體積最有可能與我們學(xué)過的哪個立體圖形的體積有關(guān)?為什么?
接著引導(dǎo)學(xué)生從圓錐和圓柱的共同特征入手,它們的底都是圓,從而引出圓錐的體積可能和圓柱的體積有關(guān)。學(xué)生通過知識的遷移產(chǎn)生猜想,引出圓柱,為實(shí)驗(yàn)探究做好鋪墊,并且進(jìn)一步激發(fā)了他們對新知的`濃烈探索欲望。
2、實(shí)驗(yàn)探究,合作學(xué)習(xí)
首先,我會出示實(shí)驗(yàn)要求,明確各組任務(wù)。實(shí)驗(yàn)活動分為兩組,一號學(xué)具用來證明等底等高的圓柱和圓錐,圓柱的體積是圓錐體積的3倍,圓錐的體積是圓柱體積的三分之一。二號學(xué)具用來對比證明等底不等高、等高不等底、不等底不等高的圓柱和圓錐不存在上面的關(guān)系。學(xué)生操作實(shí)驗(yàn)時,我會巡視指導(dǎo)。
3、全班交流,匯報(bào)結(jié)果
實(shí)驗(yàn)完畢后,各小組匯報(bào)展示實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):一號學(xué)具的實(shí)驗(yàn)結(jié)果是一致的,在空圓錐里裝滿沙子倒入圓柱里都是三次裝滿。而二號學(xué)具的實(shí)驗(yàn)結(jié)果是不一致的,在空圓錐里裝滿沙子倒入圓柱,出現(xiàn)了不同次數(shù)的裝滿情況,唯獨(dú)沒有出現(xiàn)三次的情況。
接著,提出質(zhì)疑:為什么各小組一號學(xué)具的實(shí)驗(yàn)結(jié)果都是三次裝滿,而二號學(xué)具的結(jié)果卻有所不同?學(xué)生小組討論后,全班交流發(fā)現(xiàn):一號學(xué)具的圓柱和圓錐都是等底等高的,而二號學(xué)具中的圓錐和圓柱有等底不等高的,有等高不等底的,也有不等高不等底的。啟發(fā)學(xué)生思考:是不是所有符合等底等高條件的圓柱和圓錐,都是三次裝滿?
4、教師演示,加以驗(yàn)證
我會用標(biāo)準(zhǔn)教具裝水再試驗(yàn)一次,加以驗(yàn)證,由學(xué)生自行總結(jié)出實(shí)驗(yàn)結(jié)果:等底等高的圓錐和圓柱,圓柱的體積是圓錐的三倍,圓錐的體積是圓柱的三分之一.雖然學(xué)生通過實(shí)驗(yàn)得到了結(jié)論,但是我還是會和學(xué)生解釋一下,用實(shí)驗(yàn)得到的結(jié)果有可能是不嚴(yán)密的,實(shí)驗(yàn)只是一種驗(yàn)證手段,只是現(xiàn)在限于知識水平,還不能嚴(yán)格證明圓錐的體積是等底等高的圓柱體積的三分之一,但數(shù)學(xué)家已經(jīng)證明了這一結(jié)論,可以直接應(yīng)用。最后引導(dǎo)學(xué)生用字母表示圓錐的體積公式V=?sh,培養(yǎng)學(xué)生的符號意識,體會數(shù)學(xué)的簡潔美。通過實(shí)驗(yàn)探究的活動,讓學(xué)生在合作交流中經(jīng)歷“做數(shù)學(xué)”的過程,讓學(xué)生體驗(yàn)到學(xué)習(xí)成功的喜悅。
第三環(huán)節(jié):鞏固練習(xí),拓展延伸
為了檢測本節(jié)課目標(biāo)的達(dá)成,我設(shè)計(jì)以下練習(xí),1、基本練習(xí),及時檢查學(xué)生對所學(xué)知識的理解程度,鞏固圓錐的體積公式。2、解決引課中兩個冰淇淋體積的問題,首尾呼應(yīng)。3、綜合訓(xùn)練,給學(xué)生提供了思維發(fā)展的空間,培養(yǎng)學(xué)生靈活運(yùn)用知識解決實(shí)際問題的能力。
第四環(huán)節(jié):回顧梳理,課堂小結(jié)
在這一環(huán)節(jié),我將引導(dǎo)學(xué)生圍繞“通過本節(jié)課的學(xué)習(xí),你有什么收獲?”回顧梳理本節(jié)課學(xué)習(xí)的內(nèi)容,交流自己的學(xué)習(xí)心得和學(xué)習(xí)方法,有利于培養(yǎng)學(xué)生的抽象概括能力和語言表達(dá)能力,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
說板書設(shè)計(jì)
以上呈現(xiàn)的就是我的板書設(shè)計(jì),我的設(shè)計(jì)以提綱式的板書為主,這樣可以很直觀、很清晰、更明了的將整課內(nèi)容展示出來,一目了然,便于學(xué)生對所學(xué)知識的理解和掌握。
結(jié)束語:以上就是我說課的全部內(nèi)容,感謝各位評委老師的耐心傾聽!
教學(xué)內(nèi)容:
人教版九年義務(wù)教育小學(xué)數(shù)學(xué)教科書第十二冊。
整體感知:
這部分知識是學(xué)生在有了圓錐的認(rèn)識和圓柱體積相關(guān)知識的基礎(chǔ)上進(jìn)行教學(xué)的。在知識與技能上,通過對圓錐體的研究,經(jīng)歷并理解圓錐體積公式的推導(dǎo)過程,會計(jì)算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯(lián)系,通過猜想、課件演示、實(shí)踐操作,從經(jīng)歷和體驗(yàn)中驗(yàn)證,讓學(xué)生在自主探索與合作交流過程中真正理解和掌握基本的數(shù)學(xué)知識與技能,數(shù)學(xué)思想和方法,使學(xué)生真正成為學(xué)習(xí)的主人。
教學(xué)目的:
1、使學(xué)生掌握圓錐體積的計(jì)算公式,會用公式計(jì)算圓錐的體積,解決日常生活中有關(guān)簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷猜想——驗(yàn)證,合作——探究的教學(xué)過程,理解圓錐體積公式的推導(dǎo)過程,體驗(yàn)轉(zhuǎn)化的思想。
3、培養(yǎng)學(xué)生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
[點(diǎn)評:知識與技能目標(biāo)的設(shè)計(jì)全面、具體、有針對性。不但使學(xué)生掌握圓錐體積的計(jì)算公式,而且培養(yǎng)了學(xué)生運(yùn)用圓錐體積公式解決生活中的實(shí)際問題的能力,使學(xué)生體會到數(shù)學(xué)與生活的密切聯(lián)系注。并注重對學(xué)生“猜想——————驗(yàn)證”、“合作——————探究”等學(xué)習(xí)方式的培養(yǎng)及“轉(zhuǎn)化”數(shù)學(xué)思想方法的滲透;同時關(guān)注學(xué)生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
教學(xué)重點(diǎn):掌握圓錐體積的計(jì)算公式,并能靈活利用公式求圓錐的體積。
教學(xué)難點(diǎn):理解圓錐體積公式的推導(dǎo)過程及解決生活中的實(shí)際問題。
1、出示圓錐體容器組織學(xué)生談一談通過前幾課的學(xué)習(xí),你對圓錐有哪些了解?然后想一想關(guān)于圓錐你還有哪些問題?
2、引導(dǎo)學(xué)生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學(xué)可以同桌交流,共同研究。(組織學(xué)生先獨(dú)立思考,然后同桌討論交流,最后匯報(bào)自己的想法。)
3、教師出示一個圓錐體的木塊引導(dǎo)學(xué)生明確前面所想的方法太麻繁、不實(shí)用。并鼓勵學(xué)生研究出一種簡便快捷的方法來求圓錐的體積。
1、先組織學(xué)生自由暢談圓錐的體積可能會與誰有關(guān)(圓柱)。先給學(xué)生獨(dú)立思考的時間,然后匯報(bào)。匯報(bào)時要闡述自己的理由。教師引導(dǎo)學(xué)生回憶圓柱體積公式的推導(dǎo)過程。
2、組織學(xué)生拿出準(zhǔn)備好的圓柱體鉛筆和轉(zhuǎn)筆刀來削鉛筆,同時教師也隨著學(xué)生一起來做。教師做好后要及時巡視,直到學(xué)生將鉛筆削得尖尖的為止。然后引導(dǎo)學(xué)生認(rèn)真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學(xué)生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關(guān)系。(削好后的圓柱與圓錐等底不等高,體積無關(guān)。)此時,教師要參與到小組討論中,及時引導(dǎo)學(xué)生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關(guān)。組織學(xué)生自己的話來總結(jié)。最后,將自己的發(fā)現(xiàn)進(jìn)行匯報(bào)。
3、課件出示:等底等高的圓柱和圓錐。組織學(xué)生認(rèn)真觀察,大膽猜想他們體積之間可能存在怎樣的關(guān)系后說說理由。教師此時要引導(dǎo)學(xué)生展開想象的翅膀大膽去猜想……
(二)小組合作,實(shí)驗(yàn)驗(yàn)證。
1、教師發(fā)給每組學(xué)生一個準(zhǔn)備好的等底等高的圓柱和圓錐、沙了,組織學(xué)生拿出等底等高的圓柱和圓錐進(jìn)行實(shí)驗(yàn)。實(shí)驗(yàn)前小組成員進(jìn)行組內(nèi)分工,有的進(jìn)行操作,有的記錄……實(shí)驗(yàn)中教師要及時巡視指導(dǎo)并參與到小組實(shí)驗(yàn)中去及時了解學(xué)生實(shí)驗(yàn)的進(jìn)展情況。并指導(dǎo)幫助學(xué)生順利完成實(shí)驗(yàn)。
2、實(shí)驗(yàn)后組內(nèi)成員進(jìn)行交流。交流的過程中,要引導(dǎo)學(xué)生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進(jìn)行匯報(bào),其它小組可以補(bǔ)充。然后全班進(jìn)行交流實(shí)驗(yàn)結(jié)果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導(dǎo)出圓錐的體積公式。預(yù)設(shè)板書如下:
4、深化公式。組織學(xué)生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預(yù)設(shè)板書如下:
V =1/3πr2h V =1/3(c/2π)2h V =1/3(d/2)2h
5、教師組織學(xué)生獨(dú)立完成書中例題后集體訂正。
(三)看書質(zhì)疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
(3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )
組織學(xué)生打手勢判斷后說明理由,并強(qiáng)調(diào)圓錐的體積是圓柱體積的1/3是以等底等高為前提的。
組織學(xué)生根據(jù)圓錐體積公式解答。
3、實(shí)踐與應(yīng)用:
學(xué)校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?
組織學(xué)生進(jìn)行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領(lǐng)學(xué)生實(shí)地操作一下。再求體積。
四、課后總結(jié),感情升華。
這節(jié)課你有什么收獲?你是怎樣獲得的?
[總評:
1、鉆研教材,創(chuàng)造性地使用教材。
教師在充分了解學(xué)生、把握課程標(biāo)準(zhǔn)、教學(xué)目標(biāo)、教材編寫意圖的基礎(chǔ)上,根據(jù)學(xué)生生活實(shí)際和學(xué)習(xí)實(shí)際,有目的地對教材內(nèi)容進(jìn)行改編和加工。
如學(xué)生削鉛筆這一活動的設(shè)計(jì),學(xué)生從“削”的過程中體驗(yàn)到圓柱與圓錐的聯(lián)系;再如動手實(shí)驗(yàn)這一環(huán)節(jié)的設(shè)計(jì),使學(xué)生在觀察、比較、動手操作,合作交流中理解掌握新知。創(chuàng)造性地融入一些生活素材,加強(qiáng)了數(shù)學(xué)與生活的密切聯(lián)系。
2、注重?cái)?shù)學(xué)思想方法的滲透。
數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓,又是知識轉(zhuǎn)化為能力的橋梁。
新課伊始,便讓學(xué)生自己想辦法求圓錐的體積,此時學(xué)生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。
這一過程潛移默化地滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法。再如:讓學(xué)生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉(zhuǎn)化的思想方法。
3、猜想—————驗(yàn)證、合作交流等學(xué)習(xí)方式體現(xiàn)了學(xué)生的主體地位。
本節(jié)課在探究新知的過程中,借助削鉛筆這一學(xué)生熟知的活動幫助學(xué)生猜想圓錐的體積可能會與誰有關(guān),再進(jìn)一步猜想又會有怎樣的關(guān)系。
緊接著讓學(xué)生在具體的實(shí)驗(yàn)操作中去驗(yàn)證自己的猜想是否正確,從而得出結(jié)論。整個過程是在教師的引導(dǎo)下,學(xué)生自主探索,發(fā)現(xiàn)問題,在合作交流中解決問題。
教師留出了充足的時間,讓學(xué)生去思考、討論、探索、爭辯和交流。真正體現(xiàn)了人人學(xué)有價值的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。
《圓錐體積的計(jì)算》教學(xué)設(shè)計(jì)模板
教學(xué)目標(biāo):
1、通過讓學(xué)生小組合作探究,利用不同的方法測量出圓錐的體積。體驗(yàn)到計(jì)算圓錐體積的計(jì)算公式v=1/3sh是最簡便的方法。
2、鍛煉學(xué)生的操作能力,估算能力,評價能力,更好的發(fā)展他們的創(chuàng)新能力。
3、培養(yǎng)學(xué)生的合作意識及主動探索知識的精神。
教學(xué)重點(diǎn):
讓學(xué)生自己親身體驗(yàn)到計(jì)算圓錐體積的不同方法。從而理解計(jì)算公式v=1/3sh,并感受到計(jì)算公式的簡便。
教學(xué)難點(diǎn):能利用不同方法計(jì)算不同物體的體積。知識的活學(xué)活用。
教學(xué)準(zhǔn)備:
1、個學(xué)生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。6
2、教學(xué)軟件。
教學(xué)流程:
一、創(chuàng)設(shè)情景,激趣引新。
1、首先教師手中拿一圓柱體問:同學(xué)們,老師想知道這個圓柱體的體積你們能幫助我嗎?
(學(xué)生踴躍舉手說明??梢韵葴y量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機(jī)拿出于剛才圓柱等底等高的圓錐,問:那老師這里還有一個圓錐體,它的體積應(yīng)該怎樣計(jì)算呢?你們知道嗎?(學(xué)生齊答不)那你們想不想研究呢?(學(xué)生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計(jì)算。(WwW.zfw152.com 趣祝福)
〈設(shè)計(jì)意圖:通過以舊引新,不僅讓學(xué)生感受到圓錐與圓柱的聯(lián)系,而且還能體驗(yàn)得到新知的親切。從而產(chǎn)生學(xué)習(xí)新知的欲望?!?/p>
二、小組合作,探究學(xué)習(xí)。
1、動手操作,測量圓錐體的體積。
要求:每組同學(xué),利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內(nèi)的圓錐體的體積。測量物體是容器的厚度不計(jì)。
〈全體學(xué)生在動手操作,互相商量解決問題的辦法。教師巡回指導(dǎo)。課堂呈現(xiàn)小組探究學(xué)習(xí)的熱烈場面?!?/p>
3、分組匯報(bào)不同的方法。
〈學(xué)生在匯報(bào)時可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內(nèi)裝滿水,然后把它倒入量杯內(nèi),我們看到水面的刻度就是水的體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進(jìn)行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的`體積了。
方法四:把圓錐體內(nèi)裝滿大米、沙子或水,然后將它到入與它等底等高的圓柱體容器里。發(fā)現(xiàn)到了3次正好到慢。也就是說,圓錐體的體積等于與它等底等高的圓柱體的三分之一。用字母表示為:v=1/3sh
〈設(shè)計(jì)意圖:通過討論研究和動手操作,發(fā)展學(xué)生的創(chuàng)新能力,和解決實(shí)際問題的能力。〉
(1)在講解第四個方法時,教師可以向?qū)W生質(zhì)疑,在操作此過程時有一個非常重要的前提條件是什么?為什么圓錐體的體積等于與它等底等高圓柱體體積的三分之一?
(2)學(xué)生再次在小組內(nèi)操作探究。
(3)匯報(bào)結(jié)論。
(4)微機(jī)演示。
當(dāng)?shù)鹊撞坏雀邥r,當(dāng)?shù)雀卟坏鹊讜r,當(dāng)?shù)缀透叨疾幌嗟葧r,出現(xiàn)的結(jié)果是怎樣的。
您現(xiàn)在正在閱讀的《圓錐體積的計(jì)算》教學(xué)設(shè)計(jì)文章內(nèi)容由收集!本站將為您提供更多的精品教學(xué)資源!《圓錐體積的計(jì)算》教學(xué)設(shè)計(jì)〈設(shè)計(jì)意圖:通過學(xué)生探究與微機(jī)演示,使學(xué)生直觀的感受圓錐體與圓柱體之間關(guān)系。加深對圓錐體體積計(jì)算公式的理解。〉
4、評價以上各種辦法
同學(xué)們的結(jié)論是用公式計(jì)算比較方便。
三、解決實(shí)際問題
(問題一)
1、各小組量一量,算一算自己組內(nèi)的圓錐體的體積。(測量,計(jì)算時都要保留整數(shù))
2、匯報(bào)結(jié)果。
先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
1、現(xiàn)知道手中的圓錐體每立方厘米約裝0.9克大米,計(jì)算這個圓錐體容器可裝多少克大米?
2、匯報(bào)結(jié)果。
用每立方厘米裝大米的克數(shù)乘圓錐的體積。算式:0.9x262236克
3、驗(yàn)證計(jì)算結(jié)果
用稱稱一稱,比較一下結(jié)果。
4、討論兩次結(jié)果為什么不同。
由于測量時厚度不計(jì),計(jì)算時是近似值。都存在誤差。
〈設(shè)計(jì)意圖:通過測量,計(jì)算等環(huán)節(jié),發(fā)展學(xué)生的應(yīng)用意識及估算的能力?!?/p>
(問題三)
利用圓錐體積公式計(jì)算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計(jì)算不規(guī)則物體體積或容積。(直說出計(jì)算的方法即可)
1、用什么方法計(jì)算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計(jì)算?
3、不規(guī)則的零件體積計(jì)算?
〈設(shè)計(jì)意圖:結(jié)合生活實(shí)際讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系。及解決實(shí)際問題的不同方法及策略,培養(yǎng)創(chuàng)新能力?!?/p>
四、總結(jié)全課
說說你的收獲,鼓勵學(xué)生學(xué)習(xí)知識要活學(xué)活用,大膽動腦,勇于創(chuàng)新。
圓錐體積的計(jì)算、泥工師傅用的鉛錘,底面積是20平方厘米,高4厘米,求體積。
2、一個圓柱體橡皮泥,底面積是12平方厘米,高4厘米,把它捏成:
(1)底面積不變的圓錐,圓錐的高是多少?
(2)高不變的圓錐,圓錐的底面積是多少?
(3)底面積是8平方厘米的圓錐,高是多少?
3.一個圓柱的體積是18.84立方厘米,那么,與它等底等高的圓錐的體積是()立方厘米。
4.一個圓錐的體積是18立方分米,那么與它等底等高的圓柱的體積比它多()立方分米。
5.一個圓錐體積是14.4立方厘米,與它等底等高的圓柱體底面積是18平方厘米,高是多少
6.一個圓錐和一個圓柱等底等高,圓柱的體積比圓錐多18立方分米,圓錐的體積是()立方分米。
7、一個圓錐體的體積是a立方米,和它等底等高的圓柱體體積是()
⑴ 立方米
②3a立方米
③ 9立方米
(2)把一段圓鋼切削成一個最大的圓錐體,圓柱體體積是6立方米,圓錐體體積是()立方米
(1)6立方米(2)3立方米
(3)2立方米
8、一個圓錐形沙堆,高是1.5米,底面半徑是2米,每立方米沙重1.8噸。這堆沙約重多少噸?
9、一個圓錐形沙堆,底面積是15平方米,高2米。用這堆沙鋪在長400米、寬3米 的路面上,能鋪多厚?
10、一個圓錐形沙堆,底面半徑是2米,高是1.5米。如果每立方米沙重1.7噸。這堆沙重多少噸?
11、一段圓柱形鋼材長5米,橫截成兩個小
圓柱表面積增加了20平方厘米。如果每立方厘米鋼重7.8克,這段鋼材重多少千克?(得數(shù)保留整千克)
12、、一個圓柱形水槽,底面半徑是8厘米,水槽中完全浸沒著一塊鐵件,當(dāng)鐵件取出時,水面下降了5厘米。這塊鐵件的體積是多少立方厘米?
13、一個圓柱和一個圓錐等底等高,體積相差6.28立方分米。圓柱和圓錐的體積各是多少?
14、一個圓錐與一個圓柱的底面積相等。已知圓錐與圓柱的體積的比是 1:6,圓錐的高是4.8厘米,圓柱的高是多少厘米?
15.有一個圓柱形儲糧桶, 容積是3.14立方米, 桶深2米, 把這個桶裝滿稻谷后再在上面把稻谷堆成一個高0.3米的圓錐.這個儲糧桶裝的稻谷體積是多少立方米?(保留兩位小數(shù))
16.一個圓錐形砂堆, 底面周長是31.4米, 高3米, 每方砂重1.8噸, 用一輛載重4.5噸的汽車, 幾次可以運(yùn)完?(得數(shù)保留整數(shù))
17.把一個橫截面為正方形的長方體,削成一個最大的圓錐體,已知圓錐體的底面周長6.28厘米,高5厘米,長方體的體積是多少?
18.一個圓柱體和一個圓錐體等底等高,它們的體積相差50.24立方厘米。如果圓柱體的底面半徑是2厘米,這個圓柱體的側(cè)面積是多少平方厘米?
根據(jù)教材的內(nèi)容和學(xué)生的年齡特征,我采用以下教法和學(xué)法:
1.直觀操作,突破難點(diǎn)。
在這節(jié)課中,充分運(yùn)用實(shí)物讓學(xué)生認(rèn)識直圓錐,通過圓錐體的點(diǎn),線,面,
認(rèn)識圓錐體的底和高。發(fā)揮學(xué)生四人小組的作用,大膽放手讓學(xué)生動手操作,推導(dǎo)出圓錐的體積計(jì)算公式,并懂得圓錐體和圓柱體之間的關(guān)系。通過動手操作,讓學(xué)生用多種感官去感知事物,獲取感性知識,使操作與思維緊密結(jié)合,加深對直圓錐及體積的認(rèn)識。
2.運(yùn)用電腦課件的動感突出重點(diǎn)。
圓錐體的認(rèn)識是本節(jié)課的重點(diǎn),為了讓學(xué)生充分地認(rèn)識圓錐體,把生活中
的錐形物體放在屏幕上(如小麥堆,漏斗等),運(yùn)用電腦閃動形式認(rèn)識圓錐體的底面,側(cè)面,頂點(diǎn),高。認(rèn)識圓錐體積的大小也是本節(jié)的重點(diǎn)和難點(diǎn)內(nèi)容,為了突出重點(diǎn),突破難點(diǎn),著重引導(dǎo)學(xué)生去探索等底等高的圓錐體與圓柱體體積之間的關(guān)系,充分運(yùn)用電腦屏幕顯示操作推導(dǎo)過程,把靜態(tài)轉(zhuǎn)化為動態(tài),加深學(xué)生對所學(xué)知識的直觀印象,生動、形象、具體的教學(xué)使學(xué)生能夠由具體到抽象,由感覺到知覺進(jìn)行順利的過渡。
3.注意培養(yǎng)學(xué)生的發(fā)散性思維和創(chuàng)新意識。
創(chuàng)新教育是素質(zhì)教育的核心,因此在課堂教學(xué)中注意培養(yǎng)學(xué)生的發(fā)散性思
維和創(chuàng)新意識。
在認(rèn)識圓錐體的過程中,引導(dǎo)學(xué)生思考,發(fā)現(xiàn),認(rèn)識圓錐體的特征。在認(rèn)識圓錐體的體積的過程中,引導(dǎo)學(xué)生積極地去和等底等高的圓柱體的體積進(jìn)行比較,通過對比、分析、綜合、歸納出圓錐體的體積計(jì)算公式。學(xué)生在充分認(rèn)識了圓錐體和圓柱體之間的關(guān)系的基礎(chǔ)上,從不同方面對學(xué)生進(jìn)行練習(xí),啟發(fā)學(xué)生做一些有創(chuàng)新能力的題目,讓學(xué)生充分發(fā)揮自己創(chuàng)造力的空間,培養(yǎng)學(xué)生發(fā)散性思維能力。
1、使學(xué)生掌握圓錐體積的計(jì)算公式,會用公式計(jì)算圓錐的體積,解決日常生活中有關(guān)簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷猜想——驗(yàn)證,合作——探究的教學(xué)過程,理解圓錐體積公式的推導(dǎo)過程,體驗(yàn)轉(zhuǎn)化的思想。
3、培養(yǎng)學(xué)生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
[點(diǎn)評:知識與技能目標(biāo)的設(shè)計(jì)全面、具體、有針對性。不但使學(xué)生掌握圓錐體積的計(jì)算公式,而且培養(yǎng)了學(xué)生運(yùn)用圓錐體積公式解決生活中的實(shí)際問題的能力,使學(xué)生體會到數(shù)學(xué)與生活的密切聯(lián)系注。并注重對學(xué)生“猜想——————驗(yàn)證”、“合作——————探究”等學(xué)習(xí)方式的培養(yǎng)及“轉(zhuǎn)化”數(shù)學(xué)思想方法的滲透;同時關(guān)注學(xué)生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
教學(xué)重點(diǎn):掌握圓錐體積的計(jì)算公式,并能靈活利用公式求圓錐的體積。
教學(xué)難點(diǎn):理解圓錐體積公式的推導(dǎo)過程及解決生活中的實(shí)際問題。
一、教學(xué)內(nèi)容:
六年制小學(xué)數(shù)學(xué)教材第十二冊第25-26頁
二、教學(xué)目標(biāo):
1、知識技能目標(biāo):
◆使學(xué)生探索并初步掌握圓錐體積的計(jì)算方法和推導(dǎo)過程;
◆使學(xué)生會應(yīng)用公式計(jì)算圓錐的體積并解決一些實(shí)際問題。
2、思維能力目標(biāo):
◆提高學(xué)生實(shí)踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。
3、情感態(tài)度目標(biāo):
◆培養(yǎng)學(xué)生的合作意識和探究意識;
◆使學(xué)生獲得成功的體驗(yàn),體驗(yàn)數(shù)學(xué)與生活的聯(lián)系。
三、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):使學(xué)生初步掌握圓錐體積的計(jì)算方法并解決一些實(shí)際問題
難點(diǎn):探索圓錐體積方法和推導(dǎo)過程。
教學(xué)過程:
一、質(zhì)疑引入
1 圓錐有什么特征?指名學(xué)生回答。
2 說一說圓柱體積的計(jì)算公式。
(1)已知 s、h 求 v
(2)已知 r、h 求 v
(3)已知 d、h 求 v
3 我們已經(jīng)認(rèn)識了圓錐又學(xué)過圓柱體積的計(jì)算公式,那么圓錐的體積又該如何計(jì)算呢?今天我們就來學(xué)習(xí)圓錐體積的計(jì)算。
板書課題:圓錐的體積
二、新課
(一) 教學(xué)圓錐體積的計(jì)算公式
1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計(jì)算公式的?
指名學(xué)生敘述圓柱體積的計(jì)算公式的推導(dǎo)過程:(學(xué)生:圓柱---轉(zhuǎn)化長方體- 長方體的體積公式----推導(dǎo)圓柱體公式)
2、 教師:那么圓錐的體積該怎樣求呢?能不能也通過學(xué)過的圖形來求呢?
先讓學(xué)生討論,然后指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式
〈1〉學(xué)生獨(dú)立操作
讓兩名學(xué)生到講臺上做實(shí)驗(yàn)其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個,比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱??磶状握冒褕A柱裝滿?
〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示
a 屏幕上出示等底、等高
b 等底、不等高
c 等高、不等底
實(shí)驗(yàn)報(bào)告單
實(shí)驗(yàn)器材
實(shí)驗(yàn)結(jié)果
等底不等高的圓錐、圓柱
等高不等底的圓錐、圓柱
等底等高的圓錐、圓柱
〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的 1/3 (板書 )
用字母表示圓錐的體積公式.v錐=1/3sh
做一做:
填空:
等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的( ),圓錐的體積是圓柱的體積的( )已知圓錐的體積是9立方分米,圓柱的體積是( );如果圓柱的體積是12立方分米,那么圓錐的體積是( )。
(二)運(yùn)用公式,嘗試練習(xí)
1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘 1/3 ?
試一試:
一個圓錐體,底面積是19平方米, 高是12分米。這個圓錐的體積是多少?《圓錐的體積》教學(xué)設(shè)計(jì) 相關(guān)內(nèi)容:第四單元 圓 全單元教案六下第一單元 負(fù)數(shù) 教材分析《圓錐的認(rèn)識》說課《分?jǐn)?shù)乘分?jǐn)?shù)》教后反思《納稅》教案 人教版第十一冊教案百分?jǐn)?shù)(五)折 扣圓柱的表面積第三單元分?jǐn)?shù)除法:分?jǐn)?shù)除法的意義和整數(shù)除以分?jǐn)?shù)查看更多>> 小學(xué)六年級數(shù)學(xué)教案
2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?
(如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)
練一練
3、求下面的體積。(只列式不計(jì)算)
(1)底面半徑是2 厘米,高3厘米。
3.14×22×3
(2)底面直徑是6分米,高6分米 。
3.14×(6 ÷2)2 ×6
(3)底面周長是12.56厘米,高是6厘米
3.14×(12.56 ÷6.28)2 ×6
2、求下面各圓錐的體積如圖(單位厘米)
(1)底面直徑是8分米,高9分米 (2)底面半徑3分米和高7分米
通過公式我們發(fā)現(xiàn)計(jì)算圓錐的體積所必須的條件可以是底面積和高
a、底面積和高
b、底面半徑和高
c、底面直徑和高
d、底面周長和高
三、鞏固練習(xí)
1、判斷:
⑴、圓錐的體積等于圓住體積的1/3。( )
⑵把一個圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3 ( )
⑶圓柱的體積比和它等底等高圓錐的體積大2倍。( )
⑶一個圓柱與一個圓錐的底面積和體積相等,那么圓錐的高是圓柱高的
2、填空
⑴一個圓錐與一個圓柱等底等高,已知圓錐的體積是 18 立方米,圓柱的體積是( )。
⑵一個圓錐與一個圓柱等底等體積,已知圓柱的高是 12 厘米, 圓錐的高是( )。
⑶一個圓錐與一個圓柱等高等體積,已知圓柱的底面積是 314 平方米,圓錐的底面積是( )。
3、拓展練習(xí)
工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))
(引導(dǎo)學(xué)生說出怎樣測量沙堆的底面的周長、直徑、和高。)
用兩根竹竿平行地放在沙堆兩側(cè),測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。
喜歡《圓錐的課件》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時,yjs21.com編輯還為您精選準(zhǔn)備了圓錐課件專題,希望您能喜歡!
相關(guān)推薦
為了讓教學(xué)更加順利,老師需要提前準(zhǔn)備教案和課件,確保每個課件都設(shè)計(jì)得更加完善。教案是對教學(xué)技巧的重要總結(jié)。我們?yōu)槟鷾?zhǔn)備的“圓錐的認(rèn)識課件”是經(jīng)過特別精心打造的驚喜,希望這些思考方式能夠幫助您更好地發(fā)揮想象力!...
最新更新