幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)教案通用模板人教版(精品7篇)

發(fā)布時間:2024-09-08

作為一名教師,通常會被要求編寫教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。如何把教案做到重點突出呢?以下是小編收集整理的高中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。

高中數(shù)學(xué)教案通用模板人教版 篇1

一、教材分析

1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形?!岸娼恰笔侨私贪妗稊?shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學(xué)生進一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學(xué)目標(biāo):

知識目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

(2)進一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。

德育目標(biāo):(1)使學(xué)生認識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,增強學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。

情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。

3、重點、難點:

重點:“二面角”和“二面角的平面角”的概念

難點:“二面角的平面角”概念的形成過程

二、教法分析

1、教學(xué)方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導(dǎo)、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓(xùn)練法、探究研討法為主。

2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預(yù)計學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強直觀教學(xué),還要預(yù)先做好一些二面角的模型。

三、學(xué)法指導(dǎo)

1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認知結(jié)構(gòu)。

3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

四、教學(xué)過程

心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

(一)、二面角

1、揭示概念產(chǎn)生背景。

問題情境1、在平面幾何中“角”是怎樣定義的?

問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

通過這三個問題,打開了學(xué)生的原有認知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

問題情境4、那么,應(yīng)該如何定義二面角呢?

創(chuàng)設(shè)這個問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。

問題情境5、同學(xué)們能舉出一些二面角的實例嗎?通過實際運用,可以促使學(xué)生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。

問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

2、展現(xiàn)概念形成過程

(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。

問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

問題情境8、兩定義的共同點是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。

問題情境9、這個平面的角的頂點及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習(xí)慣,這對強化他們的創(chuàng)新意識大有幫助。

問題情境10、那么,這個角的頂點及兩邊應(yīng)如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

(3)、探索實驗。通過實驗,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動手操作能力。

(4)、繼續(xù)探索,得到定義。

問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

(5)、自我驗證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

(三)、二面角及其平面角的畫法

主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

(四)、范例分析

為鞏固學(xué)生所學(xué)知識,由于時間的關(guān)系設(shè)置了一道例題。來源于實際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會到數(shù)學(xué)概念來自生活實際,并服務(wù)于生活實際,從而增強他們應(yīng)用數(shù)學(xué)的意識。

例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

分析:涉及二面角的計算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W(xué)生先做,為調(diào)動學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓(xùn)練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓(xùn)練也可作為課后思考題。

題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習(xí)、小結(jié)與作業(yè)

練習(xí):習(xí)題9.7的第3題

小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進行總結(jié),領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法。

作業(yè):習(xí)題9.7的第4題

思考題:見例題

五、板書設(shè)計(見課件)

以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!

高中數(shù)學(xué)教案通用模板人教版 篇2

教學(xué)目標(biāo):

1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

2、通過觀察、操作培養(yǎng)學(xué)生的觀察能力和動手操作能力。

3、使學(xué)生掌握度、分、秒的進位制,會作度、分、秒間的單位互化

4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動參與、勇于探究的精神。

教學(xué)重點:

理解角的概念,掌握角的三種表示方法

教學(xué)難點:

掌握度、分、秒的進位制, ,會作度、分、秒間的單位互化

教學(xué)手段:

教具:電腦課件、實物投影、量角器

學(xué)具:量角器需測量的角

教學(xué)過程:

一、建立角的概念

(一)引入角(利用課件演示)

1、從生活中引入

提問:

A、以前我們曾經(jīng)認識過角,那你們能從這兩個圖形中指出哪些地方是角嗎?

B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?

2、從射線引入

提問:

A、昨天我們認識了射線,想從一點可以引出多少條射線?

B、如果從一點出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?

C、哪兩條射線可以組成一個角?誰來指一指。

(二)認識角,總結(jié)角的定義

3、 過渡:角是怎么形成的呢?一起看

(1)、演示:老師在這畫上一個點,現(xiàn)在從這點出發(fā)引出一條射線,再從這點出發(fā)引出第二條射線。

提問:觀察從這點引出了幾條射線?此時所組成的圖形是什么圖形?

(2)、判斷下列哪些圖形是角。

(√) (×) (√) (×) (√)

為何第二幅和第四幅圖形不是角?(學(xué)生回答)

誰能用自己的話來概括一下怎樣組成的圖形叫做角?

總結(jié):有公共端點的兩條射線所組成的圖形叫做角(angle)

角的第二定義:角也可以看做由一條射線繞端點旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點0按逆時針方向旋轉(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

B

0 A

4、認識角的各部分名稱,明確頂點、邊的作用

(1)觀看角的圖形提問:這個點叫什么?這兩條射線叫什么?(學(xué)生邊說師邊標(biāo)名稱)

(2)角可以畫在本上、黑板上,那角的位置是由誰決定的?

(3)頂點可以確定角的位置,從頂點引出的兩條邊可以組成一個角。

5、學(xué)會用符號表示角

提問:那么,角的符號是什么?該怎么寫,怎么讀的呢?(電腦顯示)

(1)可以標(biāo)上三個大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.

(2)觀察這兩種方法,有什么特點?(字母B都在中間)

(3)所以,在只有一個角的時候,我們還可以寫作: ∠B,讀作:角B

(4)為了方便,有時我們還可以標(biāo)上數(shù)字,寫作∠1,讀作:角1

(5)注:區(qū)別 “∠”和“

6、強調(diào)角的大小與兩邊張開的程度有關(guān),與兩條邊的長短無關(guān)。

二、 角的度量

1、學(xué)習(xí)角的度量

(1)教學(xué)生認識量角器

(2) 認識了量角器,那怎樣使用它去測量角的度數(shù)呢?這部分知識請同學(xué)們合作學(xué)習(xí)。

提出要求:小組合作邊學(xué)習(xí)測量方法邊嘗試測量

第一個角,想想有幾種方法?

1、要求合作學(xué)習(xí)探究、測量。

2、反饋匯報:學(xué)生邊演示邊復(fù)述過程

3、教師利用課件演示正確的操作過程,糾正學(xué)生中存在的問題。

4、歸納概括測量方法(兩重合一對)

(1)用量角器的中心點與角的頂點重合

(2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)

(3)另一條邊所對的角的度數(shù),就是這個角的度數(shù)。

5、小結(jié):同一個角無論是用內(nèi)刻度量角,還是用外刻度量角,結(jié)果都一樣。

6、獨立練習(xí)測量角的度數(shù)(書做一做中第一題1,3與第二題)

(1) 獨立測量,師注意查看學(xué)生中存在的問題。

(2) 課件演示糾正問題

三、度、分、秒的進位制及這些單位間的互化

為了更精細地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

1°=60′,1′=60″;

1′=( )°,1″=( )′.

例1 將57.32°用度、分、秒表示.

解:先把0.32°化為分,

0.32°=60′×0.32=19.2′.

再把0.2′化為秒,

0.2′=60″×0.2=12″.

所以 57.32″=57°19′12″.

例2 把10°6′36″用度表示.

解:先把36″化為分,

36″=( )′×36=0.6′

6′+0.6′=6.6′.

再把6.6′化為度,

6.6′=( )°×6.6=0.11°.

所以 10°6′36″=10.11°.

四、鞏固練習(xí)

課本P122練習(xí)

五、總結(jié):請大家回憶一下,今天都學(xué)了那些知識,通過學(xué)習(xí)你想說些什么?

六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

高中數(shù)學(xué)教案通用模板人教版 篇3

一、預(yù)習(xí)目標(biāo)

預(yù)習(xí)《平面向量應(yīng)用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。

二、預(yù)習(xí)內(nèi)容

閱讀課本內(nèi)容,整理例題,結(jié)合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:

1、例1如果不用向量的方法,還有其他證明方法嗎?

2、利用向量方法解決平面幾何問題的“三步曲”是什么?

3、例3中,

⑴為何值時,|F1|最小,最小值是多少?

⑵|F1|能等于|G|嗎?為什么?

三、提出疑惑

同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。

課內(nèi)探究學(xué)案

一、學(xué)習(xí)內(nèi)容

1、運用向量的有關(guān)知識(向量加減法與向量數(shù)量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。

2、運用向量的有關(guān)知識解決簡單的物理問題。

二、學(xué)習(xí)過程

探究一:

(1)向量運算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會?

(2)舉出幾個具有線性運算的幾何實例。

例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。

已知:平行四邊形ABCD。

求證:

試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?

(1)建立平面幾何與向量的聯(lián)系,

(2)通過向量運算,研究幾何元素之間的關(guān)系,

(3)把運算結(jié)果“翻譯”成幾何關(guān)系。

例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?

例3,在日常生活中,你是否有這樣的經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

請同學(xué)們結(jié)合剛才這個問題,思考下面的問題:

⑴為何值時,|F1|最小,最小值是多少?

⑵|F1|能等于|G|嗎?為什么?

例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?

變式訓(xùn)練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子B相對粒子A的位移s;(2)計算s在方向上的投影。

三、反思總結(jié)

結(jié)合圖形特點,選定正交基底,用坐標(biāo)表示向量進行運算解決幾何問題,體現(xiàn)幾何問題。

代數(shù)化的特點,數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。

本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標(biāo)法,以及用向量解決實際問題的步驟。

高中數(shù)學(xué)教案通用模板人教版 篇4

一、教學(xué)目標(biāo):

知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義

過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義

情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。

二、重難點:

教學(xué)重點:曲線參數(shù)方程的定義及方法

教學(xué)難點:選擇適當(dāng)?shù)膮?shù)寫出曲線的參數(shù)方程.

三、教學(xué)方法:

啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).

四、教學(xué)過程

(一)、復(fù)習(xí)引入:

1.寫出圓方程的標(biāo)準(zhǔn)式和對應(yīng)的參數(shù)方程。

(1)圓參數(shù)方程 (為參數(shù))

(2)圓參數(shù)方程為: (為參數(shù))

2.寫出橢圓參數(shù)方程.

3.復(fù)習(xí)方向向量的概念.提出問題:已知直線的一個點和傾斜角,如何表示直線的參數(shù)方程?

(二)、講解新課:

1、問題的提出:一條直線L的傾斜角是,并且經(jīng)過點P(2,3),如何描述直線L上任意點的位置呢?

如果已知直線L經(jīng)過兩個

定點Q(1,1),P(4,3),那么又如何描述直線L上任意點的

位置呢?

2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:

(1)過定點傾斜角為的直線的

參數(shù)方程

(為參數(shù))

【辨析直線的參數(shù)方程】:設(shè)M(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點P到點M的位移,可以用有向線段數(shù)量來表示。帶符號.

(2)、經(jīng)過兩個定點Q,P(其中)的直線的參數(shù)方程為。其中點M(X,Y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點M分有向線段的數(shù)量比。當(dāng)時,M為內(nèi)分點;當(dāng)且時,M為外分點;當(dāng)時,點M與Q重合。

(三)、直線的參數(shù)方程應(yīng)用,強化理解。

1、例題:

學(xué)生練習(xí),教師準(zhǔn)對問題講評。反思歸納:

1)求直線參數(shù)方程的方法;

2)利用直線參數(shù)方程求交點。

2、鞏固導(dǎo)練:

補充:

1)直線與圓相切,那么直線的傾斜角為(A)

A.或 B.或 C.或 D.或

2)(坐標(biāo)系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則 .

解:直線化為普通方程是,該直線的斜率為,直線(為參數(shù))化為普通方程是,該直線的.斜率為,則由兩直線垂直的充要條件,得, 。

(四)、小結(jié):

(1)直線參數(shù)方程求法;

(2)直線參數(shù)方程的特點;

(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。

(五)、作業(yè):

補充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為_______

【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。

解析:由題直線的普通方程為,故它與與的距離為。

五、教學(xué)反思:

高中數(shù)學(xué)教案通用模板人教版 篇5

【教學(xué)目標(biāo)】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

【教學(xué)重難點】

教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

【教學(xué)過程】

1.情景導(dǎo)入

教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

2.展示目標(biāo)、檢查預(yù)習(xí)

3、合作探究、交流展示

(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進行分類

(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

(5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5、典型例題

例1:判斷下列語句是否正確。

⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案 A B

6、課堂檢測:

課本P8,習(xí)題1.1 A組第1題。

7.歸納整理

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

【板書設(shè)計】

一、柱、錐、臺、球的結(jié)構(gòu)

二、例題

例1

變式1、2

【作業(yè)布置】

導(dǎo)學(xué)案課后練習(xí)與提高

1.1.1柱、錐、臺、球的結(jié)構(gòu)特征

課前預(yù)習(xí)學(xué)案

一、預(yù)習(xí)目標(biāo):

通過圖形探究柱、錐、臺、球的結(jié)構(gòu)特征

二、預(yù)習(xí)內(nèi)容:

閱讀教材第2—6頁內(nèi)容,然后填空

(1)多面體的概念: 叫多面體,

叫多面體的面, 叫多面體的棱,

叫多面體的頂點。

① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

③棱臺:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

(2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

①圓柱: 所圍成的幾何體叫做圓柱

②圓錐: 所圍成的幾何

體叫做圓錐

③圓臺: 的部分叫圓臺

. ④球的定義

思考:

(1)試分析多面體與旋轉(zhuǎn)體有何去別

(2)球面球體有何去別

(3)圓與球有何去別

三、提出疑惑

同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中

疑惑點 疑惑內(nèi)容

高中數(shù)學(xué)教案通用模板人教版 篇6

一、教學(xué)目標(biāo)

理解函數(shù)的概念,能判斷兩變量之間是否具有函數(shù)關(guān)系。

掌握函數(shù)的三種表示方法:解析法、列表法、圖象法,并能進行相互轉(zhuǎn)化。

理解函數(shù)的定義域、值域的概念,并能求出簡單函數(shù)的定義域和值域。

二、教學(xué)重點

函數(shù)的概念及三種表示方法。

三、教學(xué)難點

函數(shù)的定義域和值域的確定。

四、教學(xué)過程

導(dǎo)入新課

通過實例(如氣溫隨時間的變化、汽車行駛的距離與油耗的關(guān)系等)引出函數(shù)的概念,強調(diào)函數(shù)描述的是兩個變量之間的依賴關(guān)系。

講授新課

詳細解釋函數(shù)的概念,包括定義域、值域、對應(yīng)法則等要素。

舉例說明函數(shù)的.三種表示方法:解析法(如y=x^2)、列表法、圖象法,并強調(diào)它們之間的轉(zhuǎn)化關(guān)系。

通過練習(xí)題讓學(xué)生練習(xí)確定函數(shù)的定義域和值域。

課堂小結(jié)

總結(jié)函數(shù)的概念及其性質(zhì),強調(diào)定義域和值域的重要性。

提醒學(xué)生注意函數(shù)表示方法的靈活運用。

作業(yè)布置

布置相關(guān)練習(xí)題,鞏固學(xué)生對函數(shù)概念及性質(zhì)的理解。

高中數(shù)學(xué)教案通用模板人教版 篇7

一、教學(xué)目標(biāo)

理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式和前n項和公式。

能根據(jù)題目條件判斷數(shù)列是否為等差數(shù)列,并求出等差數(shù)列的首項、公差等參數(shù)。

能運用等差數(shù)列的性質(zhì)解決簡單問題。

二、教學(xué)重點

等差數(shù)列的概念、通項公式和前n項和公式。

三、教學(xué)難點

等差數(shù)列通項公式和前n項和公式的應(yīng)用。

四、教學(xué)過程

導(dǎo)入新課

通過觀察一組數(shù)列(如1,3,5,7,9…),引出等差數(shù)列的概念,強調(diào)等差數(shù)列的特點是每個相鄰兩項的差都相等。

講授新課

詳細解釋等差數(shù)列的概念,包括首項、公差等要素。

推導(dǎo)等差數(shù)列的通項公式和前n項和公式,并通過實例進行說明。

通過練習(xí)題讓學(xué)生練習(xí)判斷數(shù)列是否為等差數(shù)列,并求出等差數(shù)列的首項、公差等參數(shù)。

課堂小結(jié)

總結(jié)等差數(shù)列的`概念、通項公式和前n項和公式,強調(diào)它們在實際問題中的應(yīng)用。

提醒學(xué)生注意等差數(shù)列性質(zhì)的靈活運用。

作業(yè)布置

布置相關(guān)練習(xí)題,鞏固學(xué)生對等差數(shù)列概念及性質(zhì)的理解,并提高他們運用公式解決實際問題的能力。

以上是兩個高中數(shù)學(xué)備課教案的示例,旨在幫助學(xué)生理解函數(shù)和等差數(shù)列的基本概念及性質(zhì),并能夠應(yīng)用相關(guān)知識解決實際問題。在實際教學(xué)中,教師可根據(jù)學(xué)生的實際情況和需要進行適當(dāng)?shù)恼{(diào)整和完善。

喜歡《高中數(shù)學(xué)教案通用模板人教版(精品7篇)》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時,yjs21.com編輯還為您精選準(zhǔn)備了高中數(shù)學(xué)教案專題,希望您能喜歡!

相關(guān)推薦

  • 人教版小學(xué)數(shù)學(xué)教案通用八篇 教案課件是每個老師工作中上課需要準(zhǔn)備的東西,每天老師要有責(zé)任寫好每份教案課件。教師應(yīng)該根據(jù)學(xué)生的不同能力和需求制定不同的教案。欄目小編為您精心準(zhǔn)備了“人教版小學(xué)數(shù)學(xué)教案”的相關(guān)內(nèi)容希望對您有所幫助,如果您認為這篇文章很有用請將本網(wǎng)頁網(wǎng)址收藏下來以便日后查看!...
    2024-08-17 閱讀全文
  • 高中數(shù)學(xué)教案模板6篇 俗話說,不打無準(zhǔn)備之仗。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,因此,老師會在授課前準(zhǔn)備好教案,教案有助于老師在之后的上課教學(xué)中井然有序的進行。您知道幼兒園教案應(yīng)該要怎么下筆嗎?為滿足你的需求,小編特地編輯了“高中數(shù)學(xué)教案模板6篇”,供你參考,希望能幫到你。一、教學(xué)目標(biāo)1.知識與技能掌...
    2023-07-04 閱讀全文
  • 最新小學(xué)數(shù)學(xué)教案人教版模板 厚德,示學(xué)生做人之本。越是新手老師越看重教案的存在,教案是教師對一節(jié)課的整體設(shè)想,如何根據(jù)課件寫教案呢?或許"最新小學(xué)數(shù)學(xué)教案人教版"是你正在尋找的內(nèi)容,歡迎你閱讀和收藏,并分享給身邊的朋友!...
    2023-02-13 閱讀全文
  • 高中數(shù)學(xué)教案模板12篇 基于您的需要,我們整理了“高中數(shù)學(xué)教案”。老師都需要為每堂課準(zhǔn)備教案課件,撰寫教案課件是每位老師都要做的事。?學(xué)生反應(yīng)可以幫助教師及時評估自己的教學(xué)效果。感謝瀏覽本內(nèi)容旨在為你提供實用信息!...
    2023-07-24 閱讀全文
  • 關(guān)于小學(xué)人教版數(shù)學(xué)教案精選7篇 千教萬教教書求真,千學(xué)萬學(xué)學(xué)做真人。教案是老師提高教學(xué)質(zhì)量的基本條件。寫教案能幫助教師全面的講述本節(jié)課的內(nèi)容和知識點,你對教案的撰寫掌握了多少呢?幼兒教師教育網(wǎng)小編特別為你收集的“關(guān)于小學(xué)人教版數(shù)學(xué)教案”,歡迎學(xué)習(xí)和參考,希望對你有幫助。...
    2022-12-14 閱讀全文

教案課件是每個老師工作中上課需要準(zhǔn)備的東西,每天老師要有責(zé)任寫好每份教案課件。教師應(yīng)該根據(jù)學(xué)生的不同能力和需求制定不同的教案。欄目小編為您精心準(zhǔn)備了“人教版小學(xué)數(shù)學(xué)教案”的相關(guān)內(nèi)容希望對您有所幫助,如果您認為這篇文章很有用請將本網(wǎng)頁網(wǎng)址收藏下來以便日后查看!...

2024-08-17 閱讀全文

俗話說,不打無準(zhǔn)備之仗。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,因此,老師會在授課前準(zhǔn)備好教案,教案有助于老師在之后的上課教學(xué)中井然有序的進行。您知道幼兒園教案應(yīng)該要怎么下筆嗎?為滿足你的需求,小編特地編輯了“高中數(shù)學(xué)教案模板6篇”,供你參考,希望能幫到你。一、教學(xué)目標(biāo)1.知識與技能掌...

2023-07-04 閱讀全文

厚德,示學(xué)生做人之本。越是新手老師越看重教案的存在,教案是教師對一節(jié)課的整體設(shè)想,如何根據(jù)課件寫教案呢?或許"最新小學(xué)數(shù)學(xué)教案人教版"是你正在尋找的內(nèi)容,歡迎你閱讀和收藏,并分享給身邊的朋友!...

2023-02-13 閱讀全文

基于您的需要,我們整理了“高中數(shù)學(xué)教案”。老師都需要為每堂課準(zhǔn)備教案課件,撰寫教案課件是每位老師都要做的事。?學(xué)生反應(yīng)可以幫助教師及時評估自己的教學(xué)效果。感謝瀏覽本內(nèi)容旨在為你提供實用信息!...

2023-07-24 閱讀全文

千教萬教教書求真,千學(xué)萬學(xué)學(xué)做真人。教案是老師提高教學(xué)質(zhì)量的基本條件。寫教案能幫助教師全面的講述本節(jié)課的內(nèi)容和知識點,你對教案的撰寫掌握了多少呢?幼兒教師教育網(wǎng)小編特別為你收集的“關(guān)于小學(xué)人教版數(shù)學(xué)教案”,歡迎學(xué)習(xí)和參考,希望對你有幫助。...

2022-12-14 閱讀全文