幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關資訊

高中三角函數(shù)數(shù)學教案

發(fā)布時間:2024-10-24

作為一位杰出的教職工,很有必要精心設計一份教學設計,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。教學設計要怎么寫呢?以下是小編整理的高中數(shù)學教學設計,僅供參考,希望能夠幫助到大家。

高中三角函數(shù)數(shù)學教案 篇1

 本文題目:高三數(shù)學教案:三角函數(shù)的周期性

一、學習目標與自我評估

1 掌握利用單位圓的幾何方法作函數(shù) 的圖象

2 結合 的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3 會用代數(shù)方法求 等函數(shù)的周期

4 理解周期性的幾何意義

二、學習重點與難點

周期函數(shù)的概念, 周期的求解。

三、學法指導

1、 是周期函數(shù)是指對定義域中所有 都有

,即 應是恒等式。

2、周期函數(shù)一定會有周期,但不一定存在最小正周期。

四、學習活動與意義建構

五、重點與難點探究

例1、若鐘擺的高度 與時間 之間的函數(shù)關系如圖所示

(1)求該函數(shù)的周期;

(2)求 時鐘擺的高度。

例2、求下列函數(shù)的周期。

(1) (2)

總結:(1)函數(shù) (其中 均為常數(shù),且

的周期T= 。

(2)函數(shù) (其中 均為常數(shù),且

的周期T= 。

例3、求證: 的`周期為 。

例4、(1)研究 和 函數(shù)的圖象,分析其周期性。

(2)求證: 的周期為 (其中 均為常數(shù),

總結:函數(shù) (其中 均為常數(shù),且

的周期T= 。

例5、(1)求 的周期。

(2)已知 滿足 ,求證: 是周期函數(shù)

課后思考:能否利用單位圓作函數(shù) 的圖象。

六、作業(yè):

七、自主體驗與運用

1、函數(shù) 的周期為 ( )

A、 B、 C、 D、

2、函數(shù) 的最小正周期是 ( )

A、 B、 C、 D、

3、函數(shù) 的最小正周期是 ( )

A、 B、 C、 D、

4、函數(shù) 的周期是 ( )

A、 B、 C、 D、

5、設 是定義域為R,最小正周期為 的函數(shù),

若 ,則 的值等于 ()

A、1 B、 C、0 D、

6、函數(shù) 的最小正周期是 ,則

7、已知函數(shù) 的最小正周期不大于2,則正整數(shù)

的最小值是

8、求函數(shù) 的最小正周期為T,且 ,則正整數(shù)

的最大值是

9、已知函數(shù) 是周期為6的奇函數(shù),且 則

10、若函數(shù) ,則

11、用周期的定義分析 的周期。

12、已知函數(shù) ,如果使 的周期在 內(nèi),求

正整數(shù) 的值

13、一機械振動中,某質(zhì)子離開平衡位置的位移 與時間 之間的

函數(shù)關系如圖所示:

(1) 求該函數(shù)的周期;

(2) 求 時,該質(zhì)點離開平衡位置的位移。

14、已知 是定義在R上的函數(shù),且對任意 有

成立,

(1) 證明: 是周期函數(shù);

(2) 若 求 的值。

高中三角函數(shù)數(shù)學教案 篇2

一、指導思想與理論依據(jù)

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

二、教材分析

三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

三、學情分析

本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.

四、教學目標

(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;

(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;

(3).創(chuàng)新素質(zhì)目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結合的數(shù)學思想,提高學生分析問題、解決問題的能力;

(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.

五、教學重點和難點

1.教學重點

理解并掌握誘導公式.

2.教學難點

正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.

六、教法學法以及預期效果分析

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

1.教法

數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.

2.學法

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

3.預期效果

本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

七.教學流程設計

(一)創(chuàng)設情景

1.復習銳角300,450,600的三角函數(shù)值;

2.復習任意角的三角函數(shù)定義;

3.問題:由,你能否知道sin2100的值嗎?引如新課.

設計意圖

自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

(二)新知探究

1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;

2.讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點為、的坐標有什么關系;

3.sin2100與sin300之間有什么關系.

設計意圖

由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊.

(三)問題一般化

探究一

1.探究發(fā)現(xiàn)任意角的終邊與的終邊關于原點對稱;

2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;

3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系.

設計意圖

首先應用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進

(四)練習

利用誘導公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

(五)問題變形

由sin300=出發(fā),用三角的定義引導學生求出sin(-300),sin1500值,讓學生聯(lián)想若已知sin =,能否求出sin( ),sin( )的值.

學生自主探究

1.探究任意角與的三角函數(shù)又有什么關系;

2.探究任意角與的三角函數(shù)之間又有什么關系.

設計意圖

遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結論的探索過程,從特殊到一般,數(shù)形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.

展示學生自主探究的結果

給出本節(jié)課的課題

三角函數(shù)誘導公式

設計意圖

標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結.

(六)概括升華

的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個把看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)

設計意圖

簡便記憶公式.

(七)練習強化

求下列三角函數(shù)的值:(1).sin( ); (2). cos(-20400).

設計意圖

本練習的設置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的

學生練習

化簡:.

設計意圖

重點加強對三角函數(shù)的誘導公式的綜合應用.

(八)小結

1.小結使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.

2.體會數(shù)形結合、對稱、化歸的思想.

3.“學會”學習的習慣.

(九)作業(yè)

1.課本p-27,第1,2,3小題;

2.附加課外題略.

設計意圖

加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.

(十)板書設計:(略)

高中三角函數(shù)數(shù)學教案 篇3

教學目標

1.明確等差數(shù)列的定義.

2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

3.培養(yǎng)學生觀察、歸納能力.

教學重點

1. 等差數(shù)列的概念;

2. 等差數(shù)列的通項公式

教學難點

等差數(shù)列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的.特點?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:積極思考,找上述數(shù)列共同特點。

對于數(shù)列①(1≤n≤6);(2≤n≤6)

對于數(shù)列②-2n(n≥1)(n≥2)

對于數(shù)列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

二、等差數(shù)列的通項公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關系還可得:即:則:=如:三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項

(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項公式 (n≥1)

推導出公式:(V)課后作業(yè)

一、課本P118習題3.2 1,2

二、1.預習內(nèi)容:課本P116例2P117例4

2.預習提綱:

①如何應用等差數(shù)列的定義及通項公式解決一些相關問題?

②等差數(shù)列有哪些性質(zhì)?

高中三角函數(shù)數(shù)學教案 篇4

一、教材分析及處理

函數(shù)是高中數(shù)學的重要內(nèi)容之一,函數(shù)的基礎知識在數(shù)學和其他許多學科中有著廣泛的應用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學習數(shù)學的重要基礎知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領域,《函數(shù)》教學設計。

對函數(shù)概念本質(zhì)的理解,首先應通過與初中定義的比較、與其他知識的`聯(lián)系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數(shù)概念.其次在后續(xù)的學習中通過基本初等函數(shù),引導學生以具體函數(shù)為依托、反復地、螺旋式上升地理解函數(shù)的本質(zhì)。

教學重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。

學生現(xiàn)狀

學生在第一章的時候已經(jīng)學習了集合的概念,同時在初中時已學過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。

二、教學三維目標分析

1、知識與技能(重點和難點)

(1)、通過實例讓學生能夠進一步體會到函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。不但讓學生能完成本節(jié)知識的學習,還能較好的復習前面內(nèi)容,前后銜接。

(2)、了解構成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。

(3)、掌握定義域的表示法,如區(qū)間形式等。

(4)、了解映射的概念。

2、過程與方法

函數(shù)的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:

(1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學生在教學中的主體地位,培養(yǎng)學生的創(chuàng)新意識。

(2)、面向全體學生,根據(jù)課本大綱要求授課。

(3)、加強學法指導,既要讓學生學會本節(jié)知識點,也要讓學生會自我主動學習。

3、情感態(tài)度與價值觀

(1)、通過多媒體給出實例,學生小組討論,給出自己的結論和觀點,加上老師的輔助講解,培養(yǎng)學生的實踐能力和和大膽創(chuàng)新意識,教案《《函數(shù)》教學設計》。

(2)、讓學生自己討論給出結論,培養(yǎng)學生的自我動手能力和小組團結能力。

三、教學器材

多媒體ppt課件

四、教學過程

教學內(nèi)容教師活動學生活動設計意圖

《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應用的廣泛,將同學們的視線引入函數(shù)的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內(nèi)容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數(shù)的世界,體現(xiàn)了新課標的理念:從知識走向生活

知識回顧:初中所學習的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎上引導學生向更深的內(nèi)容探索、求知。即復習了所學內(nèi)容又做了即將所學內(nèi)容的鋪墊

思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認識函數(shù)結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應用到本節(jié)知識,前后聯(lián)系、銜接

新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題

對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結更好的掌握函數(shù)概念,通過問題來更好的掌握知識

函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎上引入另一種方法

注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內(nèi)容和知識點

習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯(lián)系

映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內(nèi)容做更好的鋪墊

小結(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結,使學生更明白知識點

五、教學評價

為了使學生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應,與初中時學習函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學內(nèi)部研究函數(shù)打下了基礎。

在培養(yǎng)學生的能力上,本課也進行了整體設計,通過探究、思考,培養(yǎng)了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學生的創(chuàng)新意識與探究能力。

雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學理念。

高中三角函數(shù)數(shù)學教案 篇5

一、教材分析

這節(jié)課是在初中學習的銳角三角函數(shù)的基礎上,進一步學習任意角的三角函數(shù)。任意角的三角函數(shù)通常是借助直角坐標系來定義的。三角函數(shù)的定義是本章教學內(nèi)容的基本概念和重要概念,也是學習后續(xù)內(nèi)容的基礎,更是學好本章內(nèi)容的關鍵。因此,要重點地體會、理解和掌握三角函數(shù)的定義。

二、學生情況分析

本課時研究的是任意角的三角函數(shù),學生在初中階段曾研究過銳角三角函數(shù),其研究范圍是銳角;

其研究方法是幾何的,沒有坐標系的參與;

其研究目的是為解直角三角形服務。以上三點都是與本課時不同的,因此在教學過程中要發(fā)展學生的已有認知經(jīng)驗,發(fā)揮其正遷移。

三、教學目標

知識與能力:借助單位圓理解意角的三角函數(shù)(正弦、余弦、正切)的定義。(能根據(jù)任意角的三角函數(shù)的定義求出具體的角的各三角函數(shù)值。)

過程與方法:在學習的過程中,培養(yǎng)學生用代數(shù)方法研究幾何問題的思路。

情感態(tài)度與價值觀:讓學生積極參與知識的`形成過程,經(jīng)歷知識的“發(fā)現(xiàn)”過程,獲得發(fā)現(xiàn)的“經(jīng)驗”。

四、教學重點、難點分析

重點:理解任意角三角函數(shù)(正弦、余弦、正切)的定義。

難點:通過坐標求任意角的三角函數(shù)值。

五、教學方法與策略

教學過程中采用學生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學生認知特點,本節(jié)課采用“啟發(fā)探索、講練結合”的方法組織教學。

六、教學過程

問題1:現(xiàn)在請你回憶初中學過的銳角三角函數(shù)的定義,并思考一個問題:如果將銳角置于平面直角坐標系中,如何用直角坐標系中角的終邊上的點的坐標表示銳角三角函數(shù)呢?

設計意圖:將已有知識坐標化,分化難點。用新的觀點再認識學生的已有知識經(jīng)驗,發(fā)揮其正遷移作用,同時使本課時的學習與學生的已有知識經(jīng)驗緊密聯(lián)系,使知識有一個熟悉的起點,扎實的固著點。)

預計的回答:學生可以回憶出初中學過的銳角三角函數(shù)的定義,但是在用坐標語言表述時可能會出現(xiàn)困難——即使將角置于坐標系中但是仍然習慣用三角形邊的比值表示銳角三角函數(shù),需要教師引導學生將之轉換為用終邊上的點的坐標表示銳角三角函數(shù)。

問題2:回憶弧度制中1弧度角的幾何解釋,它是借助于單位圓給出的,能否從中得到啟示將上述定義的形式化簡,化簡的依據(jù)是什么?寫出最簡單的形式。

設計意圖:引入單位圓。深化對單位圓作用的認識,用數(shù)學的簡潔美引導學生進行研究,為定義的拓展奠定基礎。該問題與問題1結合,分步推進,降低難度,基本尊重教材的處理方式。

預計的困難:由于學生只接觸過一次單位圓,對它所能起的作用只有一般的了解,所以需要教師的引導。也可以引導學生從形式上對上述定義化簡,使得分母為1,之后通過分母的幾何意義將之與單位圓結合起來。

單位圓中定義銳角三角函數(shù):點P的坐標為(x,y),那么銳角α的三角函數(shù)可以用坐標表示為:

[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。

問題3:大家現(xiàn)在能不能給出任意角的三角函數(shù)的定義。

設計意圖:引導學生在借助單位圓定義銳角三角函數(shù)的基礎上,進一步給出任意角三角函數(shù)的定義。

有學生給出任意角三角函數(shù)的定義,教師進行整理。

例1:(P12)例2:(P12)

學生練習:P15練習1、2。

小結:任意角的三角函數(shù)的定義。

作業(yè):P20 A組1、2。

高中三角函數(shù)數(shù)學教案 篇6

一、教學內(nèi)容

本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

二、教學目標

1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關推理,進一步體會三角函數(shù)的意義。

2、能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應的銳角的大小。

三、過程與方法

通過進行有關推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學過程中,教師可在教材的基礎上適當拓展,使得內(nèi)容更為豐富,教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的.學習方法.

四、教學重點和難點

重點:進行含有30°、45°、60°角的三角函數(shù)值的計算

難點:記住30°、45°、60°角的三角函數(shù)值

五、教學準備

教師準備

預先準備教材、教參以及多媒體課件

學生準備

教材、同步練習冊、作業(yè)本、草稿紙、作圖工具等

六、教學步驟

教學流程設計

教師指導學生活動

1。新章節(jié)開場白。 1。進入學習狀態(tài)。

2。進行教學。 2。配合學習。

3??偨Y和指導學生練習。 3記錄相關內(nèi)容,完成練習。

教學過程設計

1、從學生原有的認知結構提出問題

2、師生共同研究形成概念

3、隨堂練習

4、小結

5、作業(yè)

板書設計

1、敘述三角函數(shù)的意義

2、30°、45°、60°角的三角函數(shù)值

3、例題

七、課后反思

本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關于這方面的學習。

高中三角函數(shù)數(shù)學教案 篇7

【高考要求】:三角函數(shù)的有關概念(B).

【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

【教學重難點】: 終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

【知識復習與自學質(zhì)疑】

一、問題.

1、角的概念是什么?角按旋轉方向分為哪幾類?

2、在平面直角坐標系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數(shù)有哪些基本關系式?

二、練習.

1.給出下列命題:

(1)小于 的角是銳角;(2)若 是第一象限的角,則 必為第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2 與角 的終邊不可能相同;

(7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負半軸上。其中正確的命題的序號是

2.設P 點是角終邊上一點,且滿足 則 的值是

3.一個扇形弧AOB 的面積是1 ,它的周長為4 ,則該扇形的中心角= 弦AB長=

4.若 則角 的終邊在 象限。

5.在直角坐標系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關系是

6.若 是第三象限的角,則- , 的終邊落在何處?

【交流展示、互動探究與精講點撥】

例1.如圖, 分別是角 的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在 上所有角的集合;

(3)求始邊在OM位置,終邊在ON位置的所有角的集合.

例2.(1)已知角的終邊在直線 上,求 的值;

(2)已知角的終邊上有一點A ,求 的值。

例3.若 ,則 在第 象限.

例4.若一扇形的周長為20 ,則當扇形的圓心角 等于多少弧度時,這個扇形的面積最大?最大面積是多少?

【矯正反饋】

1、若銳角 的終邊上一點的坐標為 ,則角 的弧度數(shù)為 .

2、若 ,又 是第二,第三象限角,則 的取值范圍是 .

3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .

4、已知點P 在第三象限,則 角終邊在第 象限.

5、設角 的終邊過點P ,則 的值為 .

6、已知角 的終邊上一點P 且 ,求 和 的值.

【遷移應用】

1、經(jīng)過3小時35分鐘,分針轉過的角的弧度是 .時針轉過的角的弧度數(shù)是 .

2、若點P 在第一象限,則在 內(nèi) 的取值范圍是 .

3、若點P從(1,0)出發(fā),沿單位圓 逆時針方向運動 弧長到達Q點,則Q點坐標為 .

4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.

高中三角函數(shù)數(shù)學教案 篇8

一、概述

教材內(nèi)容:等比數(shù)列的概念和通項公式的推導及簡單應用 教材難點:靈活應用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式

二、教學目標分析

1. 知識目標

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導

2.能力目標

1)學會通過實例歸納概念

2)通過學習等比數(shù)列的.通項公式及其推導學會歸納假設

3)提高數(shù)學建模的能力

3、情感目標:

1)充分感受數(shù)列是反映現(xiàn)實生活的模型

2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活

3)數(shù)學是豐富多彩的而不是枯燥無味的

三、教學對象及學習需要分析

1、 教學對象分析:

1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。

2)對歸納假設較弱,應加強這方面教學

2、學習需要分析:

四. 教學策略選擇與設計

1.課前復習

1)復習等差數(shù)列的概念及通向公式

2)復習指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導入

高中三角函數(shù)數(shù)學教案 篇9

(一)概念及其解析

這一欄目的要點是:闡述概念的內(nèi)涵;在揭示內(nèi)涵的基礎上說明本課內(nèi)容的核心所在;必要時要對概念在中學數(shù)學中的地位進行分析;明確概念所反映的數(shù)學思想方法。在此基礎上確定教學重點。

概念

描述周期現(xiàn)象的數(shù)學模型,最基本而重要的背景:勻速圓周運動。

定義域:(弧度制下)任意角的集合;對應法則:任意角α的終邊與單位圓的交點坐標為(x,y),正弦函數(shù)為y=sinα,余弦函數(shù)為x=cosα;值域:[-1,1]。

概念解析

核心:對應法則。

思想方法:函數(shù)思想--一般函數(shù)概念的指導作用;形與數(shù)結合--象限角概念基礎上;模型思想--單位圓上的點隨角的變化而變化的規(guī)律的數(shù)學刻畫。

重點:理解任意角三角函數(shù)的對應法則--需要一定時間。

(二)目標和目標解析

一堂課的教學目標是教學目的的具體化,是教學活動每一階段所要實現(xiàn)的教學結果,是衡量教學質(zhì)量的標準。當前,許多教師沒有意識到制定教學目標的重要性,他們往往只從“課標”或“教參”上抄錄,而且表述目標時,“八股”現(xiàn)象嚴重。我們主張,課堂教學目標不以“三維目標”(知識與技能、過程與方法、情感態(tài)度價值觀)或“四維目標”(知識技能、數(shù)學思考、解決問題、情感態(tài)度)分列,而以內(nèi)容及由內(nèi)容反映的思想方法為載體,將數(shù)學能力、情感態(tài)度等隱性目標融于其中,并用了解、理解、掌握等及相應的行為動詞經(jīng)歷、體驗、探究等表述目標,特別要闡明經(jīng)過教學,學生將有哪些變化,會做哪些以前不會做的事。

為了更加清晰地把握教學目標,以給課堂中教和學的行為做出準確定向,需要對教學目標中的關鍵詞進行解析,即要解析了解、理解、掌握、經(jīng)歷、體驗、探究等的具體含義,其中特別要明確當前內(nèi)容所反映的數(shù)學思想方法的教學目標。

教學目標:

理解任意角三角函數(shù)(正弦、余弦、正切)的定義。

目標解析:

(1)知道三角函數(shù)研究的問題;

(2)經(jīng)歷“單位圓法”定義三角函數(shù)的過程;

(3)知道三角函數(shù)的對應法則、自變量(定義域)、函數(shù)值(值域);

(4)體會定義三角函數(shù)過程中的數(shù)形結合、數(shù)學模型、化歸等思想方法.

(三)教學問題診斷分析

這一欄目的要點是:教師根據(jù)自己以往的教學經(jīng)驗,對學生認知狀況的分析,以及數(shù)學知識內(nèi)在的邏輯關系,在思維發(fā)展理論的指導下,對本內(nèi)容在教與學中可能遇到的困難進行預測,并對出現(xiàn)困難的原因進行分析。在上述分析的基礎上指出教學難點。

教學問題診斷和教學難點:

認知基礎

(1)函數(shù)的知識--“理解三角函數(shù)定義”到底要理解什么?--三要素;

(2)銳角三角函數(shù)的定義--背景(直角三角形)、對應關系(角度 比值)、解決的問題(解三角形)--側重幾何特性;

(3)任意角、弧度制、單位圓--在直角坐標系下討論問題的經(jīng)驗,借助單位圓使問題簡化的經(jīng)驗。

認知分析

(1)三角函數(shù)是一類特殊函數(shù),“三角函數(shù)”是“函數(shù)”的下位概念,用“概念同化”方式學習,要理解“三要素”的具體內(nèi)涵,其中核心是“對應法則”;

(2)從銳角三角函數(shù)到任意角三角函數(shù),一種“形式推廣”,載體要從直角三角形過渡到直角坐標系,其核心是要明確用坐標定義三角函數(shù)的思想方法;

(3)體會將“任意點”化歸到“單位圓上的點”的意義--求簡的思想。

教學難點

(1)先要在弧度制下(用單位圓的半徑度量角)實現(xiàn)角的集合與實數(shù)集的一一對應,再實現(xiàn)數(shù)到坐標的對應,不是直接的對應,會造成理解困難;

(2)銳角三角函數(shù)的“比值”過渡到坐標表示的比值,需要從函數(shù)角度重新認識問題;

(3)求簡到“單位圓上點的坐標”,思想方法深刻,學生不易理解。

(四)教學過程設計

在設計教學過程時,如下問題需要予以關注:

強調(diào)教學過程的內(nèi)在邏輯線索;

要給出學生思考和操作的具體描述;

要突出核心概念的思維建構和技能操作過程,突出思想方法的領悟過程分析;

以“問題串”方式呈現(xiàn)為主,應當認真思考每一問題的設計意圖、師生活動預設,以及需要概括的概念要點、思想方法,需要進行的技能訓練,需要培養(yǎng)的能力,等。

另外,要根據(jù)內(nèi)容特點設計教學過程,如基于問題解決的設計,講授式教學設計,自主探究式教學設計,合作交流式教學設計,等。

教學過程設計

1.復習提問

請回答下列問題:

(1)前面學習了任意角,你能說說任意角概念與平面幾何中的角的概念有什么不同嗎?

(2)引進象限角概念有什么好處?

(3)在度量角的大小時,弧度制與角度制有什么區(qū)別?

(4)我們是怎樣簡化弧度制的度量單位的`?

(設計意圖:從為學習三角函數(shù)概念服務的角度復習;關注的是思想方法。)

2.先行組織者

我們知道,函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型。例如指數(shù)函數(shù)描述了“指數(shù)爆炸”,對數(shù)函數(shù)描述了“對數(shù)增長”等。圓周運動是一種重要的運動,其中最基本的是一個質(zhì)點繞點O 做勻速圓周運動,其變化規(guī)律該用什么函數(shù)模型描述呢?“任意角的三角函數(shù)”就是一個刻畫這種“周而復始”的變化規(guī)律的函數(shù)模型。

(設計意圖:解決“學習的必要性”問題,明確要研究的問題。)

3.概念教學過程

問題1 對于三角函數(shù)我們并不陌生,初中學過銳角三角函數(shù),你能說說它的自變量和對應關系各是什么嗎?任意畫一個銳角 α,你能借助三角板,根據(jù)銳角三角函數(shù)的定義找出sinα的值嗎?

(設計意圖:從函數(shù)角度重新認識銳角三角函數(shù)定義,突出“與點的位置無關”。)

問題2 你能借助象限角的概念,用直角坐標系中點的坐標表示銳角三角函數(shù)嗎?

(設計意圖:比值“坐標化”。)

問題3 上述表達式比較復雜,你能設法將它化簡嗎?

(設計意圖:為“單位圓法”作鋪墊。學生答出“取點P(x,y)使x2+y2=1”后追問“為什么可以這樣做?)”

教師講授:類比上述做法,設任意角α的終邊與單位圓交點為P(x,y),定義正弦函數(shù)為y=sinα,余弦函數(shù)為x=cosα。

(設計意圖:“定義”是一種“規(guī)定”;把精力放在定義合理性的理解上。)

問題4 你能說明上述定義符合函數(shù)定義的要求嗎?

(設計意圖:讓學生用函數(shù)的三要素說明定義的合理性,以此進一步明確三角函數(shù)的對應法則、定義域和值域。)

例1 分別求自變量π/2,π,- π/3所對應的正弦函數(shù)值和余弦函數(shù)值。

(設計意圖:讓學生熟悉定義,從中概括出用定義解題的步驟。)

例2 角α的終邊過P(1/2, - /2),求它的三角函數(shù)值。

4.概念的“精致”

通過概念的“精致”,引導學生認識概念的細節(jié),并將新概念納入到概念系統(tǒng)中去,使學生全面理解三角函數(shù)概念。這里包括如下內(nèi)容:

三角函數(shù)值的符號問題;

終邊與坐標軸重合時的三角函數(shù)值;

終邊相同的角的同名三角函數(shù)值;

與銳角三角函數(shù)的比較:因襲與擴張;

從“形”的角度看三角函數(shù)--三角函數(shù)線,聯(lián)系的觀點;

終邊上任意一點的坐標表示的三角函數(shù);

還可以引導學生思考三角函數(shù)的“多元聯(lián)系表示”,例如,把實數(shù)軸想象為一條柔軟的細線,原點固定在單位點A(1,0),數(shù)軸的正半軸逆時針纏繞在單位圓上,負半軸順時針纏繞在單位圓上,那么數(shù)軸上的任意一個實數(shù)(點)t 被纏繞到單位圓上的點 P(cost,sint).

5.課堂小結

(1)問題的提出--自然、水到渠成,思想高度--函數(shù)模型;

(2)研究的思想方法--與銳角三角函數(shù)的因襲與擴張的關系,化歸為最簡單也是最本質(zhì)的模型,數(shù)形結合;

(3)歸納概括概念的內(nèi)涵,明確自變量、對應法則、因變量;

(4)用概念作判斷的步驟、注意事項等。

(五)目標檢測設計

一般采用習題、練習的方式進行檢測。要明確每一個(組)習題或練習的設計目的,加強檢測的針對性、有效性。練習應當由簡單到復雜、由單一到綜合,循序漸進地進行。當前,要特別注意摒除“一步到位”的做法。過早給綜合題、難題有害無益,基礎不夠的題目更是貽害無窮。題目出不好、練習安排不合理是老師專業(yè)素養(yǎng)低的表現(xiàn)之一。

本課習題只要完成教科書上的相關題目即可,這里從略。

幼兒園教案《高中三角函數(shù)數(shù)學教案》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了等腰三角教案專題,希望您能喜歡!

相關推薦

  • 高中數(shù)學三角函數(shù)專題教案(分享7篇) 作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,借助教案可以提高教學質(zhì)量,收到預期的教學效果。教案應該怎么寫才好呢?下面是小編精心整理的高三數(shù)學三角函數(shù)復習教案,供大家參考借鑒,希望可以幫助到有需要的朋友。高中數(shù)學三角函數(shù)專題教案 篇1一、教材分析及處理函數(shù)是高中數(shù)學的重要內(nèi)容之...
    2024-10-09 閱讀全文
  • 高中數(shù)學三角函數(shù)教案人教版(分享10篇) 作為一名教職工,時常需要準備好教學設計,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創(chuàng)造性的決策,以解決怎樣教的問題。教學設計應該怎么寫呢?下面是小編為大家整理的三角函數(shù)教學設計,希望能夠幫助到大家。高中數(shù)學三角函數(shù)教案人教版 篇1一、教學目標1、理解一次函數(shù)和正比例函數(shù)的...
    2024-10-21 閱讀全文
  • 高中三角函數(shù)教學教案(優(yōu)選9篇) 作為一名教學工作者,常常要根據(jù)教學需要編寫教案,教案是教學藍圖,可以有效提高教學效率。我們應該怎么寫教案呢?以下是小編幫大家整理的高中數(shù)學函數(shù)教案,僅供參考,大家一起來看看吧。高中三角函數(shù)教學教案 篇11.課題填寫課題名稱(高中代數(shù)類課題)2.教學目標(1)知識與技能:通過本...
    2024-10-22 閱讀全文
  • 高中數(shù)學三角函數(shù)教學設計案例(匯總十篇) 作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統(tǒng)方法設計教學過程,使之成為一種具有操作性的程序。那要怎么寫好教學設計呢?下面是小編收集整理的三角函數(shù)教學設計范文,歡迎閱讀,希望大家能夠喜歡。高中數(shù)學三角函數(shù)教學設計案例 篇1教學目標...
    2024-09-15 閱讀全文
  • 高中數(shù)學三角函數(shù)教材分析(精選10篇) 作為一位杰出的教職工,很有必要精心設計一份教學設計,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。教學設計要怎么寫呢?以下是小編整理的高中數(shù)學教學設計,僅供參考,希望能夠幫助到大家。高中數(shù)學三角函數(shù)教材分析 篇1一、指導思想與理論依據(jù)數(shù)學是一門培養(yǎng)人的思維,發(fā)...
    2024-10-12 閱讀全文

作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,借助教案可以提高教學質(zhì)量,收到預期的教學效果。教案應該怎么寫才好呢?下面是小編精心整理的高三數(shù)學三角函數(shù)復習教案,供大家參考借鑒,希望可以幫助到有需要的朋友。高中數(shù)學三角函數(shù)專題教案 篇1一、教材分析及處理函數(shù)是高中數(shù)學的重要內(nèi)容之...

2024-10-09 閱讀全文

作為一名教職工,時常需要準備好教學設計,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創(chuàng)造性的決策,以解決怎樣教的問題。教學設計應該怎么寫呢?下面是小編為大家整理的三角函數(shù)教學設計,希望能夠幫助到大家。高中數(shù)學三角函數(shù)教案人教版 篇1一、教學目標1、理解一次函數(shù)和正比例函數(shù)的...

2024-10-21 閱讀全文

作為一名教學工作者,常常要根據(jù)教學需要編寫教案,教案是教學藍圖,可以有效提高教學效率。我們應該怎么寫教案呢?以下是小編幫大家整理的高中數(shù)學函數(shù)教案,僅供參考,大家一起來看看吧。高中三角函數(shù)教學教案 篇11.課題填寫課題名稱(高中代數(shù)類課題)2.教學目標(1)知識與技能:通過本...

2024-10-22 閱讀全文

作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統(tǒng)方法設計教學過程,使之成為一種具有操作性的程序。那要怎么寫好教學設計呢?下面是小編收集整理的三角函數(shù)教學設計范文,歡迎閱讀,希望大家能夠喜歡。高中數(shù)學三角函數(shù)教學設計案例 篇1教學目標...

2024-09-15 閱讀全文

作為一位杰出的教職工,很有必要精心設計一份教學設計,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。教學設計要怎么寫呢?以下是小編整理的高中數(shù)學教學設計,僅供參考,希望能夠幫助到大家。高中數(shù)學三角函數(shù)教材分析 篇1一、指導思想與理論依據(jù)數(shù)學是一門培養(yǎng)人的思維,發(fā)...

2024-10-12 閱讀全文