幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學集合教案人教版(摘錄8篇)

發(fā)布時間:2024-09-13

作為一無名無私奉獻的教育工作者,時常要開展教案準備工作,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。教案應(yīng)該怎么寫才好呢?以下是小編整理的高一數(shù)學教案,僅供參考,希望能夠幫助到大家。

高中數(shù)學集合教案人教版 篇1

教學目標

(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學生掌握組合數(shù)的計算公式;

(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

教學重點難點

重點是組合的定義、組合數(shù)及組合數(shù)的公式;

難點是解組合的應(yīng)用題.

教學過程設(shè)計

(-)導入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動)指導學生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區(qū)別?

(學生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到

[字幕]公式1:

公式2:

(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導訓練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學生活動)思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學生的綜合分析能力.

【反饋練習 學會應(yīng)用】

(教師活動)給出練習,學生解答,教師點評.

[課堂練習]課本P99練習第2,5,6題.

[補充練習]

[字幕]1.計算:

2.已知 ,求 .

(學生活動)板演、解答.

設(shè)計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

(三)小結(jié)

(師生活動)共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計算的兩個公式.

(四)布置作業(yè)

1.課本作業(yè):習題10 3第1(1)、(4),3題.

2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.

高中數(shù)學集合教案人教版 篇2

教學目標

(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。

(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。

(3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點。

(4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。

(5)進一步理解數(shù)形結(jié)合的思想方法。

教學建議

教材分析

(1)知識結(jié)構(gòu)

曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的'概念和求曲線方程的問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。

(2)重點、難點分析

①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想。

②本節(jié)的難點是曲線方程的概念和求曲線方程的方法。

教法建議

(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系。曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點與坐標的對應(yīng)關(guān)系。注意強調(diào)曲線方程的完備性和純粹性。

(2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。

(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。

(4)從集合與對應(yīng)的觀點可以看得更清楚:

設(shè) 表示曲線 上適合某種條件的點 的集合;

表示二元方程的解對應(yīng)的點的坐標的集合。

可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”。

(5)在學習求曲線方程的方法時,應(yīng)從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實例的基礎(chǔ)上讓學生自然地獲得。教學中對課本例2的解法分析很重要。

由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程。”

(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。

高中數(shù)學集合教案人教版 篇3

一、本課數(shù)學內(nèi)容的本質(zhì)、地位、作用分析

普通高中課標教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時也為后續(xù)學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節(jié)意義重大。

函數(shù)在數(shù)學中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎(chǔ)。

二、教學目標分析

本節(jié)內(nèi)容包含三大知識點:

一、函數(shù)零點的定義;

二、方程的根與函數(shù)零點的等價關(guān)系;

三、零點存在性定理。

結(jié)合本節(jié)課引入三大知識點的方法,設(shè)定本節(jié)課的知識與技能目標如下:

1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;

2.結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;

3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.

本節(jié)課是學生在學習了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎(chǔ)上,通過對特殊函數(shù)圖象的分析進行展開的,是培養(yǎng)學生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。

結(jié)合本節(jié)課教學主線的設(shè)計,設(shè)定本節(jié)課的過程與方法目標如下:

1.通過化歸與轉(zhuǎn)化思想的引導,培養(yǎng)學生從已有認知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習慣;

2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學生主動應(yīng)用數(shù)學思想的意識;

3.通過習題與探究知識的相關(guān)性設(shè)置,引導學生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法;

4.通過對函數(shù)與方程思想的不斷剖析,促進學生對知識靈活應(yīng)用的能力。

由于本節(jié)課將以教師引導,學生探究為主體形式,故設(shè)定本節(jié)課的情感、態(tài)度與價值觀目標如下:

1.讓學生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;

2.培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。

3.使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感。

三、教學問題診斷

學生具備的認知基礎(chǔ):

1.基本初等函數(shù)的圖象和性質(zhì);

2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;

3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。

學生欠缺的實際能力:

1.主動應(yīng)用數(shù)形結(jié)合思想解決問題的意識還不強;

2.將未知問題已知化,將復雜問題簡單化的化歸意識淡薄;

3.從直觀到抽象的概括總結(jié)能力還不夠;

4.概念的內(nèi)涵與外延的探究意識有待提高。

對本節(jié)課的教學,教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點的。這樣處理,主要是想讓學生在原有二次函數(shù)的認知基礎(chǔ)上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復雜的函數(shù)零點就會容易一些。但學生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。

教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進行引導,容易出現(xiàn)學生被動接受,盲目記憶的結(jié)果,而喪失了對學生應(yīng)用數(shù)學思想方法的意識進行培養(yǎng)的機會。

教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數(shù)并未多做說明,這就要求教師對該定理的內(nèi)涵和外延要有清晰的把握,引導學生探究出只存在一個零點的條件,否則學生對定理的內(nèi)容很容易心存疑慮。

四、本節(jié)課的教法特點以及預期效果分析

本節(jié)課教法的幾大特點總結(jié)如下:

1.以問題為主線貫穿始終;

2.精心設(shè)置引導性的語言放手讓學生探究;

3.注重在引導學生探究問題解法的過程中滲透數(shù)學思想;

4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結(jié),進行探究階段性成果的應(yīng)用。

由于所設(shè)置的主線問題具有很高的探究價值,所以預期學生熱情會很高,積極性調(diào)動起來,那整節(jié)課才能活起來;

由于為了更好地組織學生探究所設(shè)置的引導性語言,重在去挖掘?qū)W生內(nèi)心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎(chǔ)知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;

因為在探究過程中不斷滲透數(shù)學思想,學生對親身經(jīng)歷的解題方法就會有更深的體會,主動應(yīng)用數(shù)學思想的意識在上升,對于主線問題也應(yīng)該可以迎刃而解;

因為在探究過程中引入新知識點,學生對新知識產(chǎn)生的必要性會有更深刻的體會和認識,同時在新知識產(chǎn)生后,又適時地加以應(yīng)用,學生對新知識的應(yīng)用能力不斷提高。

高中數(shù)學集合教案人教版 篇4

教學目標:

1.了解復數(shù)的幾何意義,會用復平面內(nèi)的點和向量來表示復數(shù);了解復數(shù)代數(shù)形式的加、減運算的幾何意義.

2.通過建立復平面上的點與復數(shù)的一一對應(yīng)關(guān)系,自主探索復數(shù)加減法的幾何意義.

教學重點:

復數(shù)的幾何意義,復數(shù)加減法的幾何意義.

教學難點:

復數(shù)加減法的幾何意義.

教學過程:

一 、問題情境

我們知道,實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸上的點來表示.那么,復數(shù)是否也能用點來表示呢?

二、學生活動

問題1 任何一個復數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標系中的點是一一對應(yīng)的,那么我們怎樣用平面上的點來表示復數(shù)呢?

問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應(yīng)的,那么復數(shù)能用平面向量表示嗎?

問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應(yīng)的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4 復數(shù)可以用復平面的向量來表示,那么,復數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數(shù)差的模有什么幾何意義?

三、建構(gòu)數(shù)學

1.復數(shù)的幾何意義:在平面直角坐標系中,以復數(shù)a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數(shù)a+bi,這就是復數(shù)的幾何意義.

2.復平面:建立了直角坐標系來表示復數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).

3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應(yīng),所以我們也可以用向量來表示復數(shù)z=a+bi,這也是復數(shù)的幾何意義.

6.復數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數(shù)差的模就是復平面內(nèi)與這兩個復數(shù)對應(yīng)的兩點間的距離.同時,復數(shù)加減法的法則與平面向量加減法的`坐標形式也是完全一致的.

四、數(shù)學應(yīng)用

例1 在復平面內(nèi),分別用點和向量表示下列復數(shù)4,2+i,-i,-1+3i,3-2i.

練習 課本P123練習第3,4題(口答).

思考

1.復平面內(nèi),表示一對共軛虛數(shù)的兩個點具有怎樣的位置關(guān)系?

2.如果復平面內(nèi)表示兩個虛數(shù)的點關(guān)于原點對稱,那么它們的實部和虛部分別滿足什么關(guān)系?

3.“a=0”是“復數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

4.“a=0”是“復數(shù)a+bi(a,b∈R)所對應(yīng)的點在虛軸上”的_____條件.

例2 已知復數(shù)z=(m2+m-6)+(m2+m-2)i在復平面內(nèi)所對應(yīng)的點位于第二象限,求實數(shù)m允許的取值范圍.

例3 已知復數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

思考 任意兩個復數(shù)都可以比較大小嗎?

例4 設(shè)z∈C,滿足下列條件的點Z的集合是什么圖形?

(1)│z│=2;(2)2<│z│<3.

變式:課本P124習題3.3第6題.

五、要點歸納與方法小結(jié)

本節(jié)課學習了以下內(nèi)容:

1.復數(shù)的幾何意義.

2.復數(shù)加減法的幾何意義.

3.數(shù)形結(jié)合的思想方法.

高中數(shù)學集合教案人教版 篇5

經(jīng)典例題

已知關(guān)于 的方程 的實數(shù)解在區(qū)間 ,求 的取值范圍。

反思提煉:1.常見的四種指數(shù)方程的一般解法

(1)方程 的解法:

(2)方程 的解法:

(3)方程 的解法:

(4)方程 的解法:

2.常見的三種對數(shù)方程的一般解法

(1)方程 的解法:

(2)方程 的解法:

(3)方程 的解法:

3.方程與函數(shù)之間的轉(zhuǎn)化。

4.通過數(shù)形結(jié)合解決方程有無根的問題。

課后作業(yè):

1.對正整數(shù)n,設(shè)曲線 在x=2處的切線與軸交點的縱坐標為 ,則數(shù)列 的前n項和的公式是

[答案] 2n+1-2

[解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

f ′(2)=-n2n-1-2n=(-n-2)2n-1.

在點x=2處點的縱坐標為=-2n.

∴切線方程為+2n=(-n-2)2n-1(x-2).

令x=0得,=(n+1)2n,

∴an=(n+1)2n,

∴數(shù)列ann+1的前n項和為2(2n-1)2-1=2n+1-2.

2.在平面直角坐標系 中,已知點P是函數(shù) 的圖象上的動點,該圖象在P處的切線 交軸于點M,過點P作 的垂線交軸于點N,設(shè)線段MN的中點的縱坐標為t,則t的最大值是_____________

解析:設(shè) 則 ,過點P作 的垂線

,所以,t在 上單調(diào)增,在 單調(diào)減, 。

高中數(shù)學集合教案人教版 篇6

學習目標

1. 根據(jù)具體函數(shù)圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解;

2. 通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.

舊知提示 (預習教材P89~ P91,找出疑惑之處)

復習1:什么叫零點?零點的等價性?零點存在性定理?

對于函數(shù) ,我們把使 的實數(shù)x叫做函數(shù) 的零點.

方程 有實數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .

如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點.

復習2:一元二次方程求根公式? 三次方程? 四次方程?

合作探究

探究:有12個小球,質(zhì)量均勻,只有一個是比別的球重的,你用天平稱幾次可以找出這個球的,要求次數(shù)越少越好.

解法:第一次,兩端各放 個球,低的那一端一定有重球;

第二次,兩端各放 個球,低的那一端一定有重球;

第三次,兩端各放 個球,如果平衡,剩下的就是重球,否則,低的就是重球.

思考:以上的方法其實這就是一種二分法的思想,采用類似的方法,如何求 的零點所在區(qū)間?如何找出這個零點?

新知:二分法的思想及步驟

對于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過不斷的把函數(shù)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫二分法(bisection).

反思: 給定精度,用二分法求函數(shù) 的零點近似值的步驟如何呢?

①確定區(qū)間 ,驗證 ,給定精度

②求區(qū)間 的中點 ;[]

③計算 : 若 ,則 就是函數(shù)的零點; 若 ,則令 (此時零點 ); 若 ,則令 (此時零點 );

④判斷是否達到精度即若 ,則得到零點零點值a(或b);否則重復步驟②~④.

典型例題

例1 借助計算器或計算機,利用二分法求方程 的近似解.

練1. 求方程 的解的個數(shù)及其大致所在區(qū)間.

練2.求函數(shù) 的一個正數(shù)零點(精確到 )

零點所在區(qū)間 中點函數(shù)值符號 區(qū)間長度

練3. 用二分法求 的近似值.

課堂小結(jié)

① 二分法的概念;②二分法步驟;③二分法思想.

知識拓展

高次多項式方程公式解的探索史料

在十六世紀,已找到了三次和四次函數(shù)的求根公式,但對于高于4次的函數(shù),類似的努力卻一直沒有成功,到了十九世紀,根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認識到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運算及根號表示的一般的公式解.同時,即使對于3次和4次的代數(shù)方程,其公式解的表示也相當復雜,一般來講并不適宜作具體計算.因此對于高次多項式函數(shù)及其它的一些函數(shù),有必要尋求其零點近似解的方法,這是一個在計算數(shù)學中十分重要的課題.

學習評價

1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).

A. 至少有一個零點 B. 只有一個零點

C. 沒有零點 D. 至多有一個零點

2. 下列函數(shù)圖象與 軸均有交點,其中不能用二分法求函數(shù)零點近似值的是().

3. 函數(shù) 的零點所在區(qū)間為( ).

A. B. C. D.

4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實根,由計算器可算得 , , ,那么下一個有根區(qū)間為 .

課后作業(yè)

1.若函數(shù)f(x)是奇函數(shù),且有三個零點x1、x2、x3,則x1+x2+x3的值為()

A.-1 B.0 C.3 D.不確定

2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)()

A.至少有一實數(shù)根 B.至多有一實數(shù)根

C.沒有實數(shù)根 D.有惟一實數(shù)根

3.設(shè)函數(shù)f(x)=13x-lnx(x0)則y=f(x)()

A.在區(qū)間1e,1,(1,e)內(nèi)均有零點 B.在區(qū)間1e,1, (1,e)內(nèi)均無零點

C.在區(qū)間1e,1內(nèi)有零點;在區(qū)間(1,e)內(nèi)無零點[]

D.在區(qū)間1e,1內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點

4.函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是()

A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)

5.若方程x2-3x+mx+m=0的兩根均在(0,+)內(nèi),則m的取值范圍是()

A.m1 B.01 D.0

6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點有()

A.0個 B.1個 C.2個 D.3個

7.函數(shù)y=3x-1x2的一個零點是()

A.-1 B.1 C.(-1,0) D.(1,0)

8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點的個數(shù)為( )

A.至多有一個 B.有一個或兩個 C.有且僅有一個 D.一個也沒有

9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()

x -1 0 1 2 3

ex 0.37 1 2.72 7.39 20.09

A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

10.求函數(shù)y=x3-2x2-x+2的零點,并畫出它的簡圖.

【總結(jié)】

20xx年數(shù)學網(wǎng)為小編在此為您收集了此文章高一數(shù)學教案:用二分法求方程的近似解,今后還會發(fā)布更多更好的文章希望對大家有所幫助,祝您在數(shù)學網(wǎng)學習愉快!

高中數(shù)學集合教案人教版 篇7

一、單元教學內(nèi)容

(1)算法的基本概念

(2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

(3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

二、單元教學內(nèi)容分析

算法是數(shù)學及其應(yīng)用的重要組成部分,是計算科學的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學素養(yǎng)。需要特別指出的是,中國古代數(shù)學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

三、單元教學課時安排:

1、算法的基本概念3課時

2、程序框圖與算法的基本結(jié)構(gòu)5課時

3、算法的基本語句2課時

四、單元教學目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

五、單元教學重點與難點分析

1、重點

(1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計

六、單元總體教學方法

本章教學采用啟發(fā)式教學,輔以觀察法、發(fā)現(xiàn)法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領(lǐng)會及一定的練習才能掌握本節(jié)知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升分層遞進(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

八、單元教學過程分析

1.算法基本概念教學過程分析

對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2.算法的流程圖教學過程分析

對生活中的實際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

3.基本算法語句教學過程分析

經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4.通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

九、單元評價設(shè)想

1.重視對學生數(shù)學學習過程的評價

關(guān)注學生在數(shù)學語言的學習過程中,是否對用集合語言描述數(shù)學和現(xiàn)實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數(shù)學語言進行交流的能力。

2.正確評價學生的數(shù)學基礎(chǔ)知識和基本技能

關(guān)注學生在本章(節(jié))及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學課程的相關(guān)部分,在其他相關(guān)部分還將進一步學習算法

高中數(shù)學集合教案人教版 篇8

【教學目標】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。

【教學重難點】

教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

教學難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

【教學過程】

1.情景導入

教師提出問題,引導學生觀察、舉例和相互交流,提出本節(jié)課所學內(nèi)容,出示課題。

2.展示目標、檢查預習

3、合作探究、交流展示

(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

(2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

1)有兩個面互相平行;

2)其余各面都是平行四邊形;

3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進行分類

(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5、典型例題

例1:判斷下列語句是否正確。

⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案 A B

6、課堂檢測:

課本P8,習題1.1 A組第1題。

7.歸納整理

由學生整理學習了哪些內(nèi)容

【板書設(shè)計】

一、柱、錐、臺、球的結(jié)構(gòu)

二、例題

例1

變式1、2

【作業(yè)布置】

導學案課后練習與提高

1.1.1柱、錐、臺、球的結(jié)構(gòu)特征

課前預習學案

一、預習目標:

通過圖形探究柱、錐、臺、球的結(jié)構(gòu)特征

二、預習內(nèi)容:

閱讀教材第2—6頁內(nèi)容,然后填空

(1)多面體的概念: 叫多面體,

叫多面體的面, 叫多面體的棱,

叫多面體的.頂點。

① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

③棱臺:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

(2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

①圓柱: 所圍成的幾何體叫做圓柱

②圓錐: 所圍成的幾何

體叫做圓錐

③圓臺: 的部分叫圓臺

④球的定義

思考:

(1)試分析多面體與旋轉(zhuǎn)體有何去別

(2)球面球體有何去別

(3)圓與球有何去別

三、提出疑惑

同學們,通過你的自主學習,你還有哪些疑惑,請把它填在表格中。

幼兒園教案《高中數(shù)學集合教案人教版(摘錄8篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了高中數(shù)學教案專題,希望您能喜歡!

相關(guān)推薦

  • 關(guān)于小學數(shù)學人教版教案8篇 教書育人是教師的天職,其中有苦也有樂。教案要從深度和廣度上掌握教材中概念或原理的要求,編寫教案可以使教師仔細思考這一節(jié)課的教學目標,您知道教案具體應(yīng)該怎么編寫嗎?為了讓你在使用時更加簡單方便,下面是編輯整理的“關(guān)于小學數(shù)學人教版教案”,希望能幫助到你,請收藏。...
    2022-12-21 閱讀全文
  • 高中三角函數(shù)教學教案人教版(收藏七篇) 作為一名教師,通常會被要求編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。如何把教案做到重點突出呢?以下是小編收集整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。高中三角函數(shù)教學教案人教版 篇1一、什么是教學案例教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一...
    2024-09-08 閱讀全文
  • 小學數(shù)學人教版教材的教學教案合集(23篇) 作為大家敬仰的人民教師,要對每一堂課認真負責。就必須編寫一份較為完整的教案,這樣有利于我們準確的把握教材中的重難點。上課自己輕松的同時,學生也更好的消化課堂內(nèi)容。那么教案怎樣寫才好呢?以下是幼兒教師教育網(wǎng)小編為大家收集的“小學數(shù)學人教版教材的教學教案”,歡迎大家閱讀,希望對大家有所幫助。...
    2022-08-03 閱讀全文
  • 中國人教版小學數(shù)學教案 眾所周知,一位優(yōu)秀的老師離不開一份優(yōu)質(zhì)的教案。所以老師在寫教案時要不斷修改才能產(chǎn)出一份最優(yōu)質(zhì)的教案。這樣我們可以在上課時根據(jù)不同的情況做出一定的調(diào)整,那么一份優(yōu)秀的教案應(yīng)該怎樣寫呢?幼兒教師教育網(wǎng)小編收集整理了一些“中國人教版小學數(shù)學教案”,希望對您的工作和生活有所幫助。...
    2022-08-02 閱讀全文
  • 高中數(shù)學教案通用模板人教版(精品7篇) 作為一名教師,通常會被要求編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。如何把教案做到重點突出呢?以下是小編收集整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。高中數(shù)學教案通用模板人教版 篇1一、教材分析1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形...
    2024-09-08 閱讀全文

教書育人是教師的天職,其中有苦也有樂。教案要從深度和廣度上掌握教材中概念或原理的要求,編寫教案可以使教師仔細思考這一節(jié)課的教學目標,您知道教案具體應(yīng)該怎么編寫嗎?為了讓你在使用時更加簡單方便,下面是編輯整理的“關(guān)于小學數(shù)學人教版教案”,希望能幫助到你,請收藏。...

2022-12-21 閱讀全文

作為一名教師,通常會被要求編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。如何把教案做到重點突出呢?以下是小編收集整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。高中三角函數(shù)教學教案人教版 篇1一、什么是教學案例教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一...

2024-09-08 閱讀全文

作為大家敬仰的人民教師,要對每一堂課認真負責。就必須編寫一份較為完整的教案,這樣有利于我們準確的把握教材中的重難點。上課自己輕松的同時,學生也更好的消化課堂內(nèi)容。那么教案怎樣寫才好呢?以下是幼兒教師教育網(wǎng)小編為大家收集的“小學數(shù)學人教版教材的教學教案”,歡迎大家閱讀,希望對大家有所幫助。...

2022-08-03 閱讀全文

眾所周知,一位優(yōu)秀的老師離不開一份優(yōu)質(zhì)的教案。所以老師在寫教案時要不斷修改才能產(chǎn)出一份最優(yōu)質(zhì)的教案。這樣我們可以在上課時根據(jù)不同的情況做出一定的調(diào)整,那么一份優(yōu)秀的教案應(yīng)該怎樣寫呢?幼兒教師教育網(wǎng)小編收集整理了一些“中國人教版小學數(shù)學教案”,希望對您的工作和生活有所幫助。...

2022-08-02 閱讀全文

作為一名教師,通常會被要求編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。如何把教案做到重點突出呢?以下是小編收集整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。高中數(shù)學教案通用模板人教版 篇1一、教材分析1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形...

2024-09-08 閱讀全文