教案課件在老師少不了一項工作事項,寫教案課件是每個老師每天都在從事的事情。編寫完整的教案是提高教師教育教學能力的關(guān)鍵。本文是幼兒教師教育網(wǎng)精心收集的有關(guān)“八年級函數(shù)課件”的信息,如果您覺得這個網(wǎng)站有用請動手將其收藏下來留作日后使用!
八年級下數(shù)學教案-變量與函數(shù)(2)
一、教學目的
1.使學生理解自變量的取值范圍和函數(shù)值的意義。
2.使學生理解求自變量的取值范圍的兩個依據(jù)。
3.使學生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。
4.通過求函數(shù)中自變量的取值范圍使學生進一步理解函數(shù)概念。
二、教學重點、難點
重點:函數(shù)自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學過程
復(fù)習提問
1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?
2.什么叫分式?當x取什么數(shù)時,分式x+2/2x+3有意義?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)
4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。
新課
1.結(jié)合同學舉出的實例說明解析法的意義:用教學式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。
2.結(jié)合同學舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:
(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。
(2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點:
(1)例3中的4個小題歸納起來仍是三類題型。
(2)求函數(shù)值的問題實際是求代數(shù)式值的問題。
補充例題
求下列函數(shù)當x=3時的函數(shù)值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結(jié)
1.解析法的意義:用數(shù)學式子表示函數(shù)的方法叫解析法。
2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):
(1)要使函數(shù)的解析式有意義。
①函數(shù)的解析式是整式時,自變量可取全體實數(shù);
②函數(shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;
③函數(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。
(2)對于反映實際問題的函數(shù)關(guān)系,應(yīng)使實際問題有意義。
3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。
練習:P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學注意問題
1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。
2.注意訓練與培養(yǎng)學生的優(yōu)質(zhì)聯(lián)想能力。要求學生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=k/x (k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。 因為y=k/x是一個分式,所以自變量X的取值范圍是X≠0。而y=k/x有時也被寫成xy=k或y=k·x^(-1)。
反比例函數(shù)的圖像為雙曲線。
1.當 k >0時,反比例函數(shù)圖像經(jīng)過一,三象限,每一象限內(nèi),從左往右,y隨x的增大而減小。
2.當k
反比例函數(shù)圖像是中心對稱圖形,對稱中心是原點;反比例函數(shù)的圖像也是軸對稱圖形,其對稱軸為y=x和y=-x;反比例函數(shù)圖像上的點關(guān)于坐標原點對稱。
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2.對于雙曲線y= k/x,若在分母上加減任意一個實數(shù)m (即 y=k/x(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移m個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
知識點2總體、個體、樣本
調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
例如,要調(diào)查全縣農(nóng)村中學生學生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學生進行調(diào)查,就是抽樣調(diào)查,這500名學生平均每周每人的零花錢數(shù),就是總體的一個樣本。
知識點3中位數(shù)的概念
將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
知識點4眾數(shù)的概念
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
所以這組數(shù)據(jù)的眾數(shù)是2和3。
【規(guī)律方法小結(jié)】
(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
(3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
探究交流
1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
總結(jié):
(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
(2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的'兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
(4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
課堂檢測
基本概念題
1、填空題。
(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
(2)在某班的40名學生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,則這個班學生的平均年齡約是_________;
(3)某一學生5門學科考試成績的平均分為86分,已知其中兩門學科的總分為193分,則另外3門學科的分為________;
(4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
基礎(chǔ)知識應(yīng)用題
2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
(1)計算這10個班次乘車人數(shù)的平均數(shù);
(2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
(一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點的直線?
(正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過原點(0,0)的一條直線).
3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?
4.在平面直角坐標系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.
2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.
分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.
解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.
過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.
三、實踐應(yīng)用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點坐標,根據(jù)x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應(yīng)的橫坐標和縱坐標?
一、教材分析:
反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習和對比,也是以后學習二次函數(shù)的基礎(chǔ),本課時的學習是學生對函數(shù)的圖象與性質(zhì)一個再知的過程,由于初二學生是首次接觸雙曲線這種函數(shù)圖象,所以教學時應(yīng)注意引導(dǎo)學生抓住反比例函數(shù)圖象的特征,讓學生對反比例函數(shù)有一個形象和直觀的認識。
根據(jù)二期課改“以學生為主體,激活課堂氣氛,充分調(diào)動起學生參與教學過程”的精神。在教學設(shè)計上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識的同時激發(fā)學生的學習興趣和探究欲望,引導(dǎo)學生積極參與和主動探索。
因此把教學目標確定為:1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學會用描點法畫出反比例函數(shù)的圖象;掌握圖象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。2.在教學過程中引導(dǎo)學生自主探索、思考及想象,從而培養(yǎng)學生觀察、分析、歸納的綜合能力。3.通過學習培養(yǎng)學生積極參與和勇于探索的精神。
本堂課的重點是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);
難點則是如何抓住特征準確畫出反比例函數(shù)的圖象。
為了突出重點、突破難點。我設(shè)計并制作了能動態(tài)演示函數(shù)圖象的多媒體課件。讓學生親手操作,積極參與并主動探索函數(shù)性質(zhì),幫助學生直觀地理解反比例函數(shù)的`性質(zhì)。
鑒于教材特點及初二學生的年齡特點、心理特征和認知水平,設(shè)想采用問題教學法
和對比教學法,用層層推進的提問啟發(fā)學生深入思考,主動探究,主動獲取知識。同時注意與學生已有知識的聯(lián)系,減少學生對新概念接受的困難,給學生充分的自主探索時間。通過教師的引導(dǎo),啟發(fā)調(diào)動學生的積極性,讓學生在課堂上多活動、多觀察,主動參與到整個教學活動中來,組織學生參與“探究——討論——交流——總結(jié)” 的學習活動過程,同時在教學中,還充分利用多媒體教學,通過演示,操作,觀察,練習等師生的共同活動中啟發(fā)學生,讓每個學生動手、動口、動眼、動腦,培養(yǎng)學生直覺思維能力,
本堂課立足于學生的“學”,要求學生多動手,多觀察,從而可以幫助學生形成分析、
對比、歸納的思想方法。在對比和討論中讓學生在“做中學”,提高學生利用已學知識去主動獲取新知識的能力。因此在課堂上要采用積極引導(dǎo)學生主動參與,合作交流的方法組織教學,使學生真正成為教學的主體,體會參與的樂趣,成功的喜悅,感知數(shù)學的奇妙。
(2) 運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關(guān)系
(4) 王師傅要生產(chǎn)100個零件,他的工作效率x和工作時間t之間的關(guān)系
問題1:請大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?
問題1主要是復(fù)習正比例函數(shù)的定義,為后面學生運用對比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。
問題2:那么請大家再仔細觀察一下,其余兩個函數(shù)關(guān)系式有什么共同點嗎?
通過問題2來引出反比例函數(shù)的解析式 ,請學生對比正比例函數(shù)的定
義來給出反比例函數(shù)的定義,這不僅有助于對舊知識的復(fù)習和鞏固,同時還可以培養(yǎng)學生的對比和探究能力。
一、教學目標
1.使學生理解并掌握反比例函數(shù)的概念
2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式
3.能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想
二、重、難點
1.重點:理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式
2.難點:理解反比例函數(shù)的概念
3.難點的突破方法:
(1)在引入反比例函數(shù)的概念時,可適當復(fù)習一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識,這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解
(2)注意引導(dǎo)學生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實數(shù);看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點和不同點。
(3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式
三、例題的意圖分析
教材第46頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學生從實際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。
教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學生進一步體會函數(shù)所蘊含的“變化與對應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對應(yīng)關(guān)系。
補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學生分析、解決問題的能力。
四、課堂引入
1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?
2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關(guān)系是怎樣的?
五、例習題分析
例1.見教材P47
分析:因為y是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
例1.(補充)下列等式中,哪些是反比例函數(shù)
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式
例2.(補充)當m取什么值時,函數(shù)是反比例函數(shù)?
分析:反比例函數(shù)(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯誤
《實際問題與反比例函數(shù)(第三課時)》是新人教版八年級下冊第十七章第二節(jié)的課題,是在前面學習了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)應(yīng)用課。體現(xiàn)反比例函數(shù)是解決實際問題有效的數(shù)學模型,經(jīng)歷“找出常量和變量,建立并表示函數(shù)模型,討論函數(shù)模型,解決實際問題“的過程。
(1)通過對“杠桿原理”等實際問題與反比例函數(shù)關(guān)系的探究,使學生能夠從函數(shù)的觀點來解決一些實際問題;
(2)通過對實際問題中變量之間關(guān)系的分析,建立函數(shù)模型,運用已學過的反比例函數(shù)知識加以解決,體會數(shù)學建模思想和學以致用的數(shù)學理念。
分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題,進一步運用函數(shù)的圖像、性質(zhì)挖掘杠桿原理中蘊涵的道理。
3、情感、態(tài)度與價值觀目標:
(1)利用函數(shù)探索古希臘科學家阿基米德發(fā)現(xiàn)的“杠桿定律”,使學生的求知欲望得到激發(fā),再通過自己所學知識解決了身邊的問題,大大提高了學生學習數(shù)學的興趣。
(2)訓練學生能把思考的結(jié)果用語言很好地表達出來,同時要讓學生很好地交流和合作。
在17、1學習了反比例函數(shù)的概念及函數(shù)的圖像和性質(zhì)基礎(chǔ)上,《實際問題與反比例函數(shù)》這一節(jié)重點介紹反比例函數(shù)在現(xiàn)實生活中的廣泛性,以及如何應(yīng)用反比例函數(shù)的知識解決現(xiàn)實生活中的實際問題。
本節(jié)課的探究的例題和練習題都是現(xiàn)實生活中的常見問題,反映了數(shù)學與實際的關(guān)系,即數(shù)學理論來源于實際又發(fā)過來服務(wù)實際,這樣有助于提高學生把抽象的數(shù)學概念應(yīng)用于實際問題的能力。在數(shù)學課上涉及了物理學力學的實際問題,運用到古希臘科學家阿基米德發(fā)現(xiàn)的“杠桿定理”,其本質(zhì)體現(xiàn)的是力與力臂兩個量的發(fā)比例關(guān)系,最后落實到運用數(shù)學來解決。通過學習,讓學生進一步加深對反比例函數(shù)的運用和理解,更深層次體會建立反比例模型解決實際問題的思想,鞏固和提高所學知識,鼓勵學生將所學知識應(yīng)用到生活中去。
本節(jié)課容易了解的地方是:杠桿是我們在生活中常常遇到的物理模型,利用杠桿定理容易建立函數(shù)關(guān)系式。
而我認為本節(jié)課有兩個問題學生比較難理解:(1)是注意在實際問題中函數(shù)自變量的取值范圍,用數(shù)學知識去解決實際問題。在講課時注意提醒學生關(guān)注實際問題的意義;(2)從函數(shù)的角度深層次挖掘變量的關(guān)系,在這一過程中學生逐漸建立運用運動變化的觀點解釋一些現(xiàn)象,實現(xiàn)從靜到動的轉(zhuǎn)變。授課時教師要按照學生的認知規(guī)律有層次、有步驟地引導(dǎo)學生分析解決問題。學生可以在我設(shè)計的問題的提示下來進行探究,學生若能發(fā)現(xiàn)其他的規(guī)律,教師應(yīng)表揚,并讓同學自己來講解。
教法特點:
1、在研究性學習中應(yīng)以問題情境和學習任務(wù)為驅(qū)動。教學過程中 ,教師不應(yīng)把現(xiàn)成的結(jié)論和方法直接告訴學生,應(yīng)以問題情境和學習任務(wù)為驅(qū)動,激發(fā)學生的探索精神和求知欲望。同時,又要營造一種寬松、和諧、積極民主的學習氛圍,使每位學生都成為問題的探索者、研究中的發(fā)現(xiàn)者。
2、注重觀察能力的培養(yǎng)。教學過程中應(yīng)注重對學生觀察的目的性、敏銳性和思辨性結(jié)合的培養(yǎng) ,優(yōu)化觀察的對象,透過現(xiàn)象看本質(zhì),迅速從繁雜無序問題中捕捉最有價值的信息。此能力是發(fā)現(xiàn)問題和解決問題的關(guān)鍵。
3、合作意識和合作能力的培養(yǎng)。合作意識和合作能力是現(xiàn)代人才必備的基本素質(zhì)之一?,F(xiàn)代社會中,幾乎任何一項工作都要許多人通力合作才能完成(如上述眾多結(jié)論的獲得) ,是否具有協(xié)作精神,能否與他人合作,已成為決定一個人能否成功的重要因素。教師要創(chuàng)設(shè)一切為學生合作的情境和機會,使學生學會與他人合作。
4、數(shù)學應(yīng)用意識的培養(yǎng)。作為數(shù)學教師 ,我們的主要任務(wù)是,培養(yǎng)學生用數(shù)學的眼光去觀察和分析實際問題,提高對數(shù)學的興趣,增強學好數(shù)學的信心,達到培養(yǎng)創(chuàng)新精神和能力的目的。以上問題的解決過程,實際上就是要求學生作為主體去面對解決的問題,主動去探索、討論,尋找問題解決的途徑,用數(shù)學的方法和技術(shù)來處理實際模型,最終得出結(jié)論。
5、數(shù)學審美能力的培養(yǎng)。數(shù)學是“真”的典范 ,同時又是“美”的科學。教師應(yīng)引導(dǎo)學生去發(fā)現(xiàn)美、體驗美、感受美和創(chuàng)造美,這樣能夠使學生的思維得到鍛煉、智力得到開發(fā)、情操得到陶冶和創(chuàng)新能力得到提高。它是鼓舞學生奮發(fā)向上,引導(dǎo)學生積極創(chuàng)造的重要因素。
本節(jié)的難點在于“把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學問題加以解決”,課前預(yù)設(shè)通過“師生共分析——分析錯處——再獨立解題”的三個環(huán)節(jié),以達到學生逐步掌握轉(zhuǎn)化的方法。
在探索實際問題與反比例函數(shù)時,教學活動設(shè)計了學生通過“現(xiàn)觀察——后歸納——再比較——后小結(jié)”的循環(huán)上升的思維進程進行引導(dǎo),在實際教學活動中學生通過自主探索能發(fā)現(xiàn)并歸納,使學生所學知識進一步內(nèi)化和系統(tǒng)化。
總之 ,學生是具有學習的自主性、探索性、協(xié)作性和實踐性。本節(jié)課是學生對科學探索與研究的初步嘗試,但是它對學生今后的學習和15、1分式的意義說課稿
一、學情分析
認知基礎(chǔ):學生在七年級下冊第四章已學習了《變量之間的關(guān)系》,對變量間互相依存的關(guān)系有了一定的認識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認知方式和思維深度上對學生有較高的要求,學生在理解和運用時會有一定的難度。
活動經(jīng)驗基礎(chǔ):在七年級下冊《變量之間的關(guān)系》一章中,學生接觸了大量的生活實例額,體會了變量之間相互依賴關(guān)系的普遍性,感受到了學習變量關(guān)系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。
二、教學目標:
知識與技能目標:
(1)初步掌握函數(shù)概念,能判斷兩個變量之間的關(guān)系是否可以看作函數(shù)。
(2)根據(jù)兩個變量之間的關(guān)系式,給定其中一個變量的值相應(yīng)的會求出另一個變量的值。
(3)會對一個具體實例進行概括抽象成為函數(shù)問題。
過程與方法目標:
(1)通過函數(shù)概念初步形成利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
(2)經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感態(tài)度與價值觀目標:
(1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
(2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
教學目標
1.知識與技能
能應(yīng)用所學的函數(shù)知識解決現(xiàn)實生活中的問題,會建構(gòu)函數(shù)“模型”.
2.過程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維.
3.情感、態(tài)度與價值觀
培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:一次函數(shù)的應(yīng)用.
2.難點:一次函數(shù)的應(yīng)用.
3.關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維.
教學方法
采用“講練結(jié)合”的教學方法,讓學生逐步地熟悉一次函數(shù)的應(yīng)用.
教學過程
一、范例點擊,應(yīng)用所學
例5小芳以米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象.
y=
例6A城有肥料噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運往C、D兩鄉(xiāng).從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的費用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運總運費最少?
解:設(shè)總運費為y元,A城往運C鄉(xiāng)的肥料量為x噸,則運往D鄉(xiāng)的肥料量為(-x)噸.B城運往C、D鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸.y與x的關(guān)系式為:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).
由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉(xiāng)0噸,運往D鄉(xiāng)噸;從B城運往C鄉(xiāng)240噸,運往D鄉(xiāng)60噸,此時總運費最少,總運費最小值為10040元.
拓展:若A城有肥料300噸,B城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運?
二、隨堂練習,鞏固深化
課本P119練習.
三、課堂,發(fā)展?jié)撃?/strong>
由學生自我本節(jié)課的表現(xiàn).
四、布置作業(yè),專題突破
課本P120習題14.2第9,10,11題.
板書設(shè)計
14.2.2一次函數(shù)(4)
1、一次函數(shù)的應(yīng)用例:
練習:
一、 說教學內(nèi)容:
(一)、本課時的內(nèi)容、地位及作用:
本課內(nèi)容是華東師大版八年級(下)數(shù)學第十八章《函數(shù)及其圖象》第四節(jié)《反比例函數(shù)》的第一課時,是繼一次函數(shù)學習之后又一類新的函數(shù)-—反比例函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)之上,而又為以后更高層次函數(shù)的學習,函數(shù)、方程、不等式間關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學學習中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù),因此,本節(jié)內(nèi)容有著舉足輕重的地位。
(二) 、本課題的教學目標:
教學目標是教學的出發(fā)點和歸宿。因此,我根據(jù)新課標的知識、能力和德育目標的要求,以學生的認知點,心理特點和本課的特點來制定教學目標:
(1)、通過對實際問題的探究,理解反比例函數(shù)的意義。
(2)、體會反比例函數(shù)的不同表示法。
(1)、通過兩個實際問題,培養(yǎng)學生勤于思考和分析歸納的能力。
(2)、在思考、歸納等過程中,發(fā)展學生的合情說理能力。
(1)、通過已有的知識經(jīng)驗探索的過程,體驗數(shù)學研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學生在教學活動中的主動探索的意識和合作交流的習慣。
(2)、理論聯(lián)系實際,讓學生有學有所用的感性認識。
二、 說教學方法:
本課將采用探究式教學,讓學生主動去探索,并分層教學將顧及到全體學生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果。同時在教學中將理論聯(lián)系實際,讓學生用所學的知識去解決身邊的實際問題。
由于學生才第一次接觸函數(shù),對一次函數(shù)盡管已經(jīng)學習了,但對函數(shù)這部分內(nèi)容不是十分熟練。因此,在教這節(jié)課時,要注意和一次函數(shù),尤其是正比例函數(shù)與反比例函數(shù)的類比。引導(dǎo)學生從函數(shù)的意義、自變量的取值范圍等方面辨明相應(yīng)的差別,在學生探索過程中,讓學生體會到在探索的途徑和方法上與一次函數(shù)相似。
對于所設(shè)置的兩個問題為學生所熟悉,盡量貼近學生生活,或者進入學生生活的圈子里,讓學生感受到親切、自然,激發(fā)學生的學習興趣,提高學生思考問題的積極主動性和解決問題的能力,從而培養(yǎng)對數(shù)學學科的.濃厚興趣,使部分學生由不愛學變得愛學。讓學生真正體會到:生活處處皆數(shù)學,生活處處有函數(shù)。
三、 說學法指導(dǎo):
課堂,只有寶貴的四十五分鐘,有相當一部分學生很難駕馭,身不由已,注意力不能集中。針對這種情況,故意設(shè)置兩個貼近生活的實例,讓學生展開想象的翅膀,主動思考,相互探討,學生互動,師生互動。在想象與探討的互動中,迸發(fā)出思想的火花,尋求問題的答案――反比例函數(shù)的意義。
為了讓學生對反比例函數(shù)的意義牢牢掌握和深刻理解,啟發(fā)學生回憶正比例函數(shù)并與之相類比,從內(nèi)容到形式,學生自主地體會出反比例函數(shù)的真正內(nèi)涵。
在本課時的教學雙邊活動過程中,抓住初中學生的心理生理特點,盡量運用生動的語言,引發(fā)學生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生學習的主動性。
教師要善于捕捉學生的反饋信息,并能立即反饋給學生,矯正學生的學法和知識錯誤。力求體現(xiàn)以學生為主體,教師為主導(dǎo)的原則,在輕松愉快的氛圍中,順利地“消化”本節(jié)課的內(nèi)容。同時,讓學生體會到“理論來自于實踐,而理論又反過來指導(dǎo)實踐”的哲學思想。從而培養(yǎng)和提高學生分析問題和解決問題的能力.
師生共同回憶前一階段所學知識,再次強調(diào)函數(shù)的重要性,同時啟開新的課題——反比例函數(shù)(教師板書),(若作業(yè)中存在普遍問題,應(yīng)先糾正)。
2、 創(chuàng)設(shè)問題情景,激發(fā)學生的學習熱情,培養(yǎng)學生遵紀守法的意識:
教師陳述本班小王發(fā)生的一個故事(問題1),故事的經(jīng)過是這樣的:
昨天下午3時許,小王的爸爸騎摩托車帶著小王去了離家24公里的縣城,因摩托車沒有注冊入戶,被交警將車扣留,6點鐘小王父子坐了小四輪按原路返回。
(2)、兩種交通工具的正常行駛速度一樣嗎?來去的路程一樣嗎?時間呢?(生答:不一樣、一樣、不一樣)
師生共同探究,時間的變化是由速度的變化所引起,設(shè)時間為t,速度為v,則有 t=24/v
問題2、我校車棚工程已經(jīng)啟動,規(guī)劃地基為36平方米的矩形,設(shè)一邊長為x(米),則另一邊長y(米)與x(米)的函數(shù)關(guān)系式。
3、 歸納得出結(jié)論:
一般地,形如y=k/x (k是常數(shù),k不為0)的函數(shù)叫做反比例函數(shù)。
在此教師對該函數(shù)做些說明。
4、 例題講解:
例1、下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
(1)、平行四邊形面積是12平方厘米,它的一邊是a厘米,這邊上的高是h厘米,a與h的函數(shù)關(guān)系。
幼師資料《八年級函數(shù)課件熱門》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼師資料而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了八年級函數(shù)課件專題,希望您能喜歡!
相關(guān)推薦
居安思危,思則有備,有備無患。當幼兒園教師的教學任務(wù)遇到困難時,往往都需要參考一下我們提前準備參考資料。資料是時代的記錄,它是產(chǎn)生于人類實踐活動。參考資料我們接下來的學習工作才會更加好!那么,你知道優(yōu)秀的幼師資料是怎樣的呢?下面是小編精心收集整理,為你帶來的函數(shù)課件八篇,供你參考和使用,請收藏和分享...
“八年級物理下冊課件”這篇優(yōu)秀的文章將帶給您更多有關(guān)知識和見解,您可以考慮一下,或許會激發(fā)出一些創(chuàng)新的點子。在教學中,教案和課件的質(zhì)量非常重要,它們是老師上好課的前提。因此,在準備時,不要草率對待。設(shè)計出優(yōu)秀的課件可以提高教學效率和教學成果。...
開學前,每位老師都需要認真準備教案和課件,確保課程設(shè)計細致周全。教案不僅是教師自我認知和管理的重要工具,也能提高課程教學的質(zhì)量。為了方便您的教學工作,我們特別為您整理了一份題為“二年級數(shù)學課件”教案,供您參考和使用,希望能為您的課程設(shè)計提供幫助。請務(wù)必收藏并分享給其他老師。...
通常老師在上課之前會帶上教案課件,通常老師都會認真負責去設(shè)計好。只有教案課件老師寫越充分,課堂氛圍當然也會更好。這篇“八年級數(shù)學課件”文章是編輯精選的一篇內(nèi)容豐富不容錯過,這些資料和信息供你參考和使用愿它們對你有所幫助!...
學生們在課堂上能夠享受到一個生動有趣的學習氛圍,這離不開老師們辛苦準備的教案。編寫每一份教案課件,需要我們每個人都認真對待。只有我們具備了嚴謹?shù)慕虒W思路和方法才能寫出優(yōu)秀的教案。那么,如何才能編寫好的教案課件呢?在經(jīng)過精心搜索后,幼兒教師教育網(wǎng)編輯為您找到了一些關(guān)于“七年級數(shù)學下冊課件”的相關(guān)資料。...
最新更新