作為一名老師,編寫(xiě)教案是必不可少的,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么什么樣的教案才是好的呢?以下是小編為大家收集的初中數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
教學(xué)目標(biāo):
1、使學(xué)生學(xué)會(huì)較熟煉地運(yùn)用切線(xiàn)的判定方法和切線(xiàn)的性質(zhì)證明問(wèn)題.
2、掌握運(yùn)用切線(xiàn)的性質(zhì)和切線(xiàn)的判定的有關(guān)問(wèn)題中輔助線(xiàn)引法的基本規(guī)律.
教學(xué)重點(diǎn):
使學(xué)生準(zhǔn)確、熟煉、靈活地運(yùn)用切線(xiàn)的判定方法及其性質(zhì).教學(xué)難點(diǎn):學(xué)生對(duì)題目不能準(zhǔn)確地進(jìn)行論證.證題中常會(huì)出現(xiàn)不知如何入手,不知往哪個(gè)方向證的情形.
教學(xué)過(guò)程:
一、新課引入:
我們已經(jīng)系統(tǒng)地學(xué)習(xí)了切線(xiàn)的判定方法和切線(xiàn)的性質(zhì),現(xiàn)在我們來(lái)利用這些知識(shí)證明有關(guān)幾何問(wèn)題.
二、新課講解:
實(shí)際上在幾何證明題中,我們更多地將切線(xiàn)的判定定理和性質(zhì)定理應(yīng)用在具體的問(wèn)題中,而一道幾何題的分析過(guò)程,是證題中的最關(guān)鍵步驟.p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線(xiàn),切點(diǎn)為b,oc平行于弦ad.求證:dc是⊙o的切線(xiàn).
分析:欲證cd是⊙o的切線(xiàn),d是⊙o的弦ad的一個(gè)端點(diǎn)當(dāng)然在⊙o上,屬于公共點(diǎn)已給定,而證直線(xiàn)是圓的切線(xiàn)的情形.所以輔助線(xiàn)應(yīng)該是連結(jié)oc.只要證od⊥cd即可.亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀(guān)察圖形,兩個(gè)角分別位于△odc和△obc中,如果兩個(gè)三角形相似或全等都可以產(chǎn)生對(duì)應(yīng)角相等的結(jié)果.而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個(gè)三角形全等.
∠3如何等于∠4呢?題中還有一個(gè)已知條件ad∥oc,平行的位置關(guān)系,可以造成角的相等關(guān)系,從而導(dǎo)致∠3=∠4.命題得證.證明:連結(jié)od.教師向?qū)W生解釋書(shū)上的證題格式屬于推出法和因?yàn)樗苑ǖ穆?lián)用,以后證題中同學(xué)可以借鑒.p.110例4如圖7-59,在以o為圓心的兩個(gè)同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點(diǎn)e求證:cd與小圓相切.
分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線(xiàn)cd與小⊙o并未已知公共點(diǎn).這個(gè)時(shí)候我們必須從圓心o向cd作垂線(xiàn),設(shè)垂足為f.此時(shí)f點(diǎn)在直線(xiàn)cd上,如果我們能證得of等于小⊙o的半徑,則說(shuō)明點(diǎn)f必在小⊙o上,即可根據(jù)切線(xiàn)的判定定理認(rèn)定cd與小⊙o相切.題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過(guò)o作of⊥cd,重足為f.
請(qǐng)同學(xué)們注意本題中證一條直線(xiàn)是圓的`切線(xiàn)時(shí),這種證明途徑是由直線(xiàn)與圓的公共點(diǎn)來(lái)給定所決定的.
練習(xí)一
p.111,1.已知:oc平分∠aob,d是oc上任意一點(diǎn),⊙d與oa相切于點(diǎn)e.求證:ob與⊙d相切.分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無(wú)公共點(diǎn)的情況.這時(shí)應(yīng)從圓心d向⊙b作垂線(xiàn),垂足為f,然后證垂線(xiàn)段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點(diǎn)e,只要連結(jié)de.再根據(jù)角平分線(xiàn)的性質(zhì),問(wèn)題便得到解決.證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點(diǎn),⊙o與腰ab相切于點(diǎn)d.求證:ac與⊙o相切.
分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線(xiàn)與圓的公共點(diǎn)未給定情況.輔助線(xiàn)的方法同第1題,證法類(lèi)同.只不過(guò)要針對(duì)本題特點(diǎn)還要連結(jié)oa.從等腰三角形的”三線(xiàn)合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線(xiàn)的性質(zhì),使問(wèn)題得到證明.證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學(xué)們想一想,在證明oe=od時(shí),還可以怎樣證?
(答案)可通過(guò)“角、角、邊”證rt△odb≌rt△oec.
三、新課講解
:為培養(yǎng)學(xué)生閱讀教材的習(xí)慣讓學(xué)生閱讀109頁(yè)到110頁(yè).從中總結(jié)出本課的主要內(nèi)容:
1.在證題中熟練應(yīng)用切線(xiàn)的判定方法和切線(xiàn)的性質(zhì).
2.在證明一條直線(xiàn)是圓的切線(xiàn)時(shí),只能遇到兩種情形之一,針對(duì)不同的情形,選擇恰當(dāng)?shù)淖C明途徑,務(wù)必使同學(xué)們真正掌握.
(1)公共點(diǎn)已給定.做法是“連結(jié)”半徑,讓半徑“垂直”于直線(xiàn).
(2)公共點(diǎn)未給定.做法是從圓心向直線(xiàn)“作垂線(xiàn)”,證“垂線(xiàn)段等于半徑”.
四、布置作業(yè)
1.教材p.116中8、9.2.教材p.117中2.
一、教學(xué)目標(biāo)
1.使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;
2.培養(yǎng)學(xué)生觀(guān)察能力,提高他們分析問(wèn)題和解決問(wèn)題的能力;
3.使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣。
二、教學(xué)重點(diǎn)和難點(diǎn)
一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟。
三、課堂教學(xué)過(guò)程設(shè)計(jì)
(一)從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問(wèn)題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問(wèn)題能否應(yīng)用一元一次方程來(lái)解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個(gè)問(wèn)題,我們來(lái)看下面這個(gè)例題。
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書(shū))
解法1:(4+2)÷(3-1)=3。
答:某數(shù)為3。
(其次,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4。
解之,得x=3。
答:某數(shù)為3。
縱觀(guān)例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過(guò)解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一。
我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。
本節(jié)課,我們就通過(guò)實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的`關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
(二)師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟
例2 某面粉倉(cāng)庫(kù)存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉(cāng)庫(kù)原來(lái)有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來(lái)重量-運(yùn)出重量=剩余重量)
3.若設(shè)原來(lái)面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過(guò)程可列表如下:
解:設(shè)原來(lái)有x千克面粉,那么運(yùn)出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來(lái)有50 000千克面粉。
此時(shí),讓學(xué)生討論:本題的相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?
(還有,原來(lái)重量=運(yùn)出重量+剩余重量;原來(lái)重量-剩余重量=運(yùn)出重量)
教師應(yīng)指出:
(1)這兩種相等關(guān)系的表達(dá)形式與“原來(lái)重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,可以任意選擇其中的一個(gè)相等關(guān)系來(lái)列方程;
(2)例2的解方程過(guò)程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。
依據(jù)例2的分析與解答過(guò)程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問(wèn)的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(1)仔細(xì)審題,透徹理解題意。即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);
(3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿(mǎn)足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;
(4)求出所列方程的解;
(5)檢驗(yàn)后明確地、完整地寫(xiě)出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。
例3 (投影)初一2班第一小組同學(xué)去蘋(píng)果園參加勞動(dòng),休息時(shí)工人師傅摘蘋(píng)果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問(wèn)第一小組有多少學(xué)生,共摘了多少個(gè)蘋(píng)果?
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過(guò)程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書(shū)寫(xiě)本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書(shū)寫(xiě)格式。)
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個(gè)方程:2x=10,
所以x=5。
其蘋(píng)果數(shù)為3× 5+9=24。
答:第一小組有5名同學(xué),共摘蘋(píng)果24個(gè)。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
(設(shè)第一小組共摘了x個(gè)蘋(píng)果,則依題意,得)
(三)課堂練習(xí)
1.買(mǎi)4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問(wèn)練習(xí)本每本多少元?
2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3 802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。
3.某工廠(chǎng)女工人占全廠(chǎng)總?cè)藬?shù)的35%,男工比女工多252人,求全廠(chǎng)總?cè)藬?shù)。
(四)師生共同小結(jié)
首先,讓學(xué)生回答如下問(wèn)題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書(shū)寫(xiě)答案.其中第三步是關(guān)鍵;
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
(五)作業(yè)
1.買(mǎi)3千克蘋(píng)果,付出10元,找回3角4分。問(wèn)每千克蘋(píng)果多少錢(qián)?
2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
3.某廠(chǎng)去年10月份生產(chǎn)電視機(jī)20xx臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái)。這家工廠(chǎng)前年10月生產(chǎn)電視機(jī)多少臺(tái)?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿(mǎn)后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?
5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù)?,一等?jiǎng)每人200元,二等獎(jiǎng)每人50元。求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。
一、教學(xué)目標(biāo):
1.知識(shí)目標(biāo):
①能準(zhǔn)確理解絕對(duì)值的幾何意義和代數(shù)意義。
②能準(zhǔn)確熟練地求一個(gè)有理數(shù)的絕對(duì)值。
③使學(xué)生知道絕對(duì)值是一個(gè)非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標(biāo):
①初步培養(yǎng)學(xué)生觀(guān)察、分析、歸納和概括的思維能力。
②初步培養(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3.情感目標(biāo):
①通過(guò)向?qū)W生滲透數(shù)形結(jié)合思想和分類(lèi)討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
②通過(guò)課堂上生動(dòng)、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂(lè),從而增強(qiáng)他們的自信心。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):絕對(duì)值的幾何意義和代數(shù)意義,以及求一個(gè)數(shù)的絕對(duì)值。
教學(xué)難點(diǎn):絕對(duì)值定義的得出、意義的理解及求一個(gè)負(fù)數(shù)的絕對(duì)值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話(huà)法
四、教學(xué)過(guò)程
(一)復(fù)習(xí)提問(wèn)
問(wèn)題:相反數(shù)6與-6在數(shù)軸上與原點(diǎn)的距離各是多少??jī)蓚€(gè)相反數(shù)在數(shù)軸上的點(diǎn)有什么特征?
(二)新授
1.引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問(wèn)題,講解6與-6的絕對(duì)值的意義。
2.數(shù)a的絕對(duì)值的意義
①幾何意義
一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離。數(shù)a的絕對(duì)值記作|a|.
舉例說(shuō)明數(shù)a的絕對(duì)值的幾何意義。(按教材P63的倒數(shù)第二段進(jìn)行講解。)
強(qiáng)調(diào):表示0的點(diǎn)與原點(diǎn)的距離是0,所以|0|=0.
指出:表示“距離”的'數(shù)是非負(fù)數(shù),所以絕對(duì)值是一個(gè)非負(fù)數(shù)。
②代數(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對(duì)值的幾何意義可以得出絕對(duì)值的代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0.
用字母a表示數(shù),則絕對(duì)值的代數(shù)意義可以表示為:
指出:絕對(duì)值的代數(shù)定義可以作為求一個(gè)數(shù)的絕對(duì)值的方法。
3.例題精講
例1.求8,-8,,-的絕對(duì)值。
按教材方法講解。
例2.計(jì)算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個(gè)數(shù)的絕對(duì)值等于2,求這個(gè)數(shù)。
解:∵|2|=2,|-2|=2
∴這個(gè)數(shù)是2或-2.
五、鞏固練習(xí)
練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.
練習(xí)二:
1.絕對(duì)值小于4的整數(shù)是____.
2.絕對(duì)值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結(jié)
本節(jié)課從幾何與代數(shù)兩個(gè)方面說(shuō)明了絕對(duì)值的意義,由絕對(duì)值的意義可知,任何數(shù)的絕對(duì)值都是非負(fù)數(shù)。絕對(duì)值的代數(shù)意義可以作為求一個(gè)數(shù)的絕對(duì)值的方法。
七、布置作業(yè)
教材P66習(xí)題2.4A組3、4、5.
知識(shí)技能目標(biāo)
1、理解反比例函數(shù)的圖象是雙曲線(xiàn),利用描點(diǎn)法畫(huà)出反比例函數(shù)的圖象,說(shuō)出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問(wèn)題。
過(guò)程性目標(biāo)
1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀(guān)察、分析、討論、概括過(guò)程,會(huì)說(shuō)出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問(wèn)題。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫(huà)出了問(wèn)題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線(xiàn)。那么它是怎么樣的曲線(xiàn)呢?本節(jié)課,我們就來(lái)討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫(huà)出函數(shù)的圖象。
分析畫(huà)出函數(shù)圖象一般分為列表、描點(diǎn)、連線(xiàn)三個(gè)步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線(xiàn):用平滑的曲線(xiàn)將第一象限各點(diǎn)依次連起來(lái),得到圖象的第一個(gè)分支;用平滑的曲線(xiàn)將第三象限各點(diǎn)依次連起來(lái),得到圖象的另一個(gè)分支。這兩個(gè)分支合起來(lái),就是反比例函數(shù)的圖象。
上述圖象,通常稱(chēng)為雙曲線(xiàn)(hyperbola)。
提問(wèn)這兩條曲線(xiàn)會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫(huà)出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫(huà)反比函數(shù)圖象,進(jìn)一步掌握畫(huà)函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問(wèn)題,并將討論、交流的結(jié)果回答問(wèn)題。
1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線(xiàn)從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k
注
1、雙曲線(xiàn)的兩個(gè)分支與x軸和y軸沒(méi)有交點(diǎn);
2、雙曲線(xiàn)的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱(chēng)。
以上兩點(diǎn)性質(zhì)在上堂課的問(wèn)題1和問(wèn)題2中反映了怎樣的實(shí)際意義?
在問(wèn)題1中反映了汽車(chē)比自行車(chē)的速度快,小華乘汽車(chē)比騎自行車(chē)到鎮(zhèn)上的時(shí)間少。
在問(wèn)題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。
三、實(shí)踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過(guò)的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k0,所以直線(xiàn)與y軸的交點(diǎn)在x軸的上方。
解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k
例3已知反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2)。
(1)求這個(gè)函數(shù)的解析式,并畫(huà)出圖象;
(2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱(chēng)點(diǎn)是否還在圖象上?
分析(1)反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過(guò)列表、描點(diǎn)、連線(xiàn)可畫(huà)出反比例函數(shù)的圖象;
(2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱(chēng)點(diǎn)是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
(2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,
點(diǎn)A的坐標(biāo)為。
點(diǎn)A關(guān)于x軸的`對(duì)稱(chēng)點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)在這個(gè)圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
(2)因?yàn)椤?
(3)因?yàn)樵诘趥€(gè)象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時(shí),y最大值=;
當(dāng)x=—3時(shí),y最小值=。
所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。
例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。
(1)寫(xiě)出用高表示長(zhǎng)的函數(shù)關(guān)系式;
(2)寫(xiě)出自變量x的取值范圍;
(3)畫(huà)出函數(shù)的圖象。
解(1)因?yàn)?00=5xy,所以。
(2)x>0。
(3)圖象如下:
說(shuō)明由于自變量x>0,所以畫(huà)出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫(huà)反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(xiàn)(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線(xiàn)從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k
五、檢測(cè)反饋
1、在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象:
2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
(1)y和x的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),y的值;
(3)當(dāng)x取何值時(shí),?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過(guò)點(diǎn)A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1
幼兒園教案《初中二元一次方程組教案一等獎(jiǎng)(收藏四篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專(zhuān)門(mén)為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了二元一次方程組教案專(zhuān)題,希望您能喜歡!
相關(guān)推薦
作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中二元一次方程組教案大全 篇1二元一次方程組是一元一次方程教學(xué)的延續(xù)與深化。很多一元一次...
作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中二元一次方程教案 篇1一、教學(xué)目標(biāo)1、通過(guò)與一元一次方程的比較,能說(shuō)出二元一次方程...
作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中數(shù)學(xué)教案二元一次方程 篇1教學(xué)目標(biāo):1. 認(rèn)識(shí)二元一次方程和二元一次方程組.2...
作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中數(shù)學(xué)二元一次方程教案 篇1一、教學(xué)目標(biāo)1、通過(guò)與一元一次方程的比較,能說(shuō)出二元一次...
最新更新