幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

式與方程教案范例15篇

發(fā)布時間:2024-07-14

基于您的需求幼兒教師教育網(wǎng)編輯為您提供了一份全面的“式與方程教案”。每個老師需要在上課前弄好自己的教案課件,沒有寫的老師就需要抓緊完成了。教案是構(gòu)建課堂教學(xué)和學(xué)校教育教學(xué)品牌的重要途徑。感謝您的光臨我們將用心呈現(xiàn)精美內(nèi)容希望您能收藏我們的網(wǎng)站!

式與方程教案【篇1】

今天我要說課的題目是《簡易方程》,接下來我將從教材分析、學(xué)情分析、教法學(xué)法設(shè)計、教學(xué)過程設(shè)計和板書六個方面展開我的說課。

《簡易方程》是青島版小學(xué)數(shù)學(xué)五年級上冊四單元第一個信息窗的教學(xué)內(nèi)容;

本節(jié)課主要介紹了測量熊貓的食量的情境,在探究中引出方程的概念和意義;

前面學(xué)生已經(jīng)學(xué)習(xí)了等式和不等式的概念,會用字母表示數(shù),這為本節(jié)課的學(xué)習(xí)做了很好的鋪墊,同時這部分的內(nèi)容是方程這一領(lǐng)域的起始課,能為以后學(xué)習(xí)用方程解決生活實際問題,打下基礎(chǔ);

因此本節(jié)課在小學(xué)數(shù)學(xué)學(xué)習(xí)中起到承上啟下的過渡作用。

基于以上對教材地位和作用的分析,結(jié)合新課標(biāo)的目標(biāo)要求,我設(shè)計如下三維教學(xué)目標(biāo):

知識與技能目標(biāo):能夠借助天平的性質(zhì)理解方程的意義,掌握方程的概念,靈活列出等式方程。

過程與方法目標(biāo):學(xué)生在問題情境中探索分析能力不斷提升;通過分組學(xué)習(xí)小組討論的方式,發(fā)揮學(xué)生與他人溝通、分工合作的能力。

情感態(tài)度價值觀目標(biāo):養(yǎng)成認(rèn)真細(xì)致、嚴(yán)謹(jǐn)求實的科學(xué)態(tài)度,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣。

通過以上對教材及教學(xué)目標(biāo)的分析,我將本節(jié)課的重、難點確定如下:

奧蘇伯爾認(rèn)為:“影響學(xué)習(xí)的最重要因素,就是學(xué)習(xí)者已經(jīng)知道了什么,要探明這一點,并據(jù)此進(jìn)行教學(xué)?!蔽揖托枰M(jìn)行學(xué)情分析

五年級的學(xué)生開始進(jìn)入少年期,求知欲和好奇心都有所增強,邏輯思維開始萌發(fā)但仍處于形象思維階段,但學(xué)生第一次接觸方程,轉(zhuǎn)化劃歸的思想比較弱,可能難于理解方程的意義,因此我會注意這方面的問題,設(shè)置天平左右相等的情境、運用直觀教具引導(dǎo)學(xué)生理解方程的由來,突破重難點,提高他們解決問題的能力。

基于以上對教學(xué)內(nèi)容、學(xué)生情況的分析以及新課標(biāo)對教學(xué)的要求,本課我將主要以引導(dǎo)啟發(fā)法為主,同時輔之以創(chuàng)設(shè)情境、講練結(jié)合、類比法等教學(xué)方法進(jìn)行教學(xué),此外,我還將借助多媒體等直觀教具幫助學(xué)生理解體會本課的內(nèi)容,讓學(xué)生體驗玩中學(xué)、動中思、做中悟的樂趣。

教師的教是為了學(xué)生更好的學(xué),科學(xué)的方法是打開知識寶庫的“金鑰匙”,結(jié)合本課內(nèi)容,我將學(xué)法主要確定為:自主探究和合作交流法。學(xué)生通過自主探究能夠自主、愉快地學(xué)習(xí),主動參與到課堂當(dāng)中。合作交流也可以培養(yǎng)學(xué)生間相互交流與合作的精神。這一過程不僅可以培養(yǎng)學(xué)生自學(xué)、思維能力,更符合新課標(biāo)要求的會問、會想和會用。

根據(jù)建構(gòu)主義理論中情境、協(xié)作、會話和意義建構(gòu)的創(chuàng)設(shè)理念,我主要從以下幾個環(huán)節(jié)構(gòu)建我的教學(xué)過程。

良好的導(dǎo)入可以激發(fā)調(diào)動學(xué)生的思維,引起學(xué)習(xí)興趣,達(dá)到“課未始、興已濃”的迫切求知狀態(tài)。本課我會采用談話法和視頻導(dǎo)入的方式向?qū)W生展示大熊貓的生活場景并提出“需要每次給大熊貓喂食多少g的實物呢?你能否幫助飼養(yǎng)員正確地給大熊貓喂食呢?”既有助于培養(yǎng)學(xué)生樂于助人的好品質(zhì)又能成功地吸引學(xué)生的注意力。

教師提供天平教具,師生共同用天平秤一秤的方式,驗證空碗的重量20g,接下來測量一碗米的重量,如果在天平右邊放50g的砝碼,天平偏向左邊;如果天平右邊放100g的砝碼,天平則偏向右邊;如果天平右邊放70g的砝碼,天平平衡了。師生在共同操作的過程中,經(jīng)歷了天平從不平衡到平衡的動態(tài)過程,學(xué)生在直觀感受的基礎(chǔ)上,深刻理解天平平衡即左右質(zhì)量相等的特性。

根據(jù)以上三個情境,向?qū)W生提問:一碗米的重量可以用字母表示嗎?天平的左右兩邊的重量怎么表示,又分別是什么關(guān)系呢?你能根據(jù)以上三種情況,列出式子嗎?

學(xué)生前后四人為一小組討論交流,并請小組代表陳述討論結(jié)果,其他組給予補充,并請學(xué)生說明列式子的依據(jù)。

學(xué)生討論的過程中,收集學(xué)生典型的答案,通過投影儀展示到大屏幕上,根據(jù)學(xué)生提出寫出的這些式子,20+x=70 20+x小于10020+x大于50,進(jìn)一步向?qū)W生發(fā)問:你能給這些式子分類嗎?進(jìn)而將等式提煉出來。本節(jié)課的重點也突顯出來了,通過此過程學(xué)生可以親身體驗分類的方法,有助于分析和解決新的數(shù)學(xué)問題。

向?qū)W生出示一組PPT圖片,首先讓學(xué)生找出左右兩邊的等量關(guān)系,讓后用x和數(shù)字分別表示出左右兩邊列出等式。(難點就是找等量關(guān)系列方程)

引導(dǎo)學(xué)生分獨立思考然后歸納,試著跟同桌說一說,然后請同學(xué)回答,這些等式有哪些共同特征?根據(jù)學(xué)生回答緊接著提取出方程的概念(板書:含有未知數(shù)的等式叫做方程。)為了加深學(xué)生的反向思維,我會向?qū)W生提出,等式與方程一樣嗎?有哪些不同呢?進(jìn)而引導(dǎo)學(xué)生區(qū)分等式與方程。

為了進(jìn)一步強化所學(xué)知識,我會選取一些有層次的題目考一考學(xué)生。第一組是基礎(chǔ)練習(xí),設(shè)置火眼金睛的游戲方式,找出眾多式子當(dāng)中的方程,加深學(xué)生對等式和方程的辨析和靈活運用。第二組是根據(jù)圖示找出等量關(guān)系列方程,通過練習(xí)的方式一舉擊破本節(jié)課難點,學(xué)生體會到解決問題的成就感,增加學(xué)習(xí)數(shù)學(xué)的信心;

為充分發(fā)揮學(xué)生的主體作用,我會提問“今天你學(xué)到了什么,有什么收獲”進(jìn)而通過學(xué)生相互交流補充完善本節(jié)課。

為了增進(jìn)學(xué)生對知識的理解,提高學(xué)生消化知識的能力,課后給學(xué)生布置這樣一道開放性的家庭作業(yè):將你今天所學(xué)的內(nèi)容寫成一篇簡短的數(shù)學(xué)日記。

我的板書,層次清晰、重點突出,易于學(xué)生學(xué)習(xí)。

以上就是我的全部說課內(nèi)容,謝謝。

式與方程教案【篇2】


橢圓方程是代數(shù)學(xué)中的一個分支,它研究的是平面上滿足特定關(guān)系的點的集合。在二維坐標(biāo)平面中,橢圓方程給出了所有滿足一定條件的點的集合,它是一種非常常見且重要的曲線類型。


橢圓方程的一般形式是(x-h)2/a2 + (y-k)2/b2 = 1,其中(h, k)是橢圓的中心坐標(biāo),a和b分別是橢圓的橫軸半徑和縱軸半徑。通過調(diào)整這些參數(shù),我們可以得到各種不同形狀和大小的橢圓。


首先讓學(xué)生通過觀察和分析,了解橢圓方程的幾何意義。引導(dǎo)學(xué)生繪制不同參數(shù)的橢圓,并觀察橢圓的特點。在此基礎(chǔ)上,引導(dǎo)學(xué)生發(fā)現(xiàn)橢圓的對稱性質(zhì),即橢圓關(guān)于兩個坐標(biāo)軸都具有對稱性。通過實際繪制和觀察,學(xué)生將更加直觀地理解橢圓的特點。


介紹橢圓的離心率。橢圓的離心率 e 是一個重要的參數(shù),它描述了橢圓形狀的扁平程度。引導(dǎo)學(xué)生通過實際計算和觀察,了解離心率與橢圓形狀之間的關(guān)系。通過繪制多個橢圓,并觀察離心率與橢圓長短軸之間的關(guān)系,學(xué)生將更加深入地理解離心率的概念。


在學(xué)生對橢圓的幾何意義有一定了解后,引入橢圓方程的參數(shù)表示法。解釋參數(shù)表示法的意義,并引導(dǎo)學(xué)生通過計算和構(gòu)圖,將參數(shù)表示法轉(zhuǎn)化為一般形式的橢圓方程。通過大量的實例練習(xí)和討論,培養(yǎng)學(xué)生對參數(shù)表示法和一般形式方程之間的轉(zhuǎn)化能力。


然后,介紹橢圓方程的標(biāo)準(zhǔn)形式。橢圓方程也可以通過平移坐標(biāo)軸的方式,轉(zhuǎn)化為標(biāo)準(zhǔn)的形式。引導(dǎo)學(xué)生通過實際練習(xí),將一般形式方程轉(zhuǎn)化為標(biāo)準(zhǔn)形式,加深對橢圓方程標(biāo)準(zhǔn)形式的理解。


引入橢圓方程的應(yīng)用領(lǐng)域。橢圓方程在物理、工程、經(jīng)濟等領(lǐng)域有著廣泛的應(yīng)用。通過引入實際案例,讓學(xué)生了解橢圓方程在實際問題中的應(yīng)用,培養(yǎng)學(xué)生將數(shù)學(xué)知識應(yīng)用到實際問題中的能力。


通過以上的教學(xué)內(nèi)容安排,學(xué)生將逐步了解和掌握橢圓方程的基本概念、幾何意義、參數(shù)表示法、標(biāo)準(zhǔn)形式和應(yīng)用領(lǐng)域。通過大量的實例練習(xí)和討論,學(xué)生將培養(yǎng)數(shù)學(xué)思維和解決實際問題的能力。


本教案通過引導(dǎo)學(xué)生觀察、分析和計算,使學(xué)生從幾何意義、參數(shù)表示法、標(biāo)準(zhǔn)形式等多個方面全面了解橢圓方程。通過大量的實例練習(xí)和討論,學(xué)生將掌握橢圓方程的基本概念和解題方法。在教學(xué)中,教師要注重培養(yǎng)學(xué)生的思維能力和實際問題解決能力,讓學(xué)生在學(xué)習(xí)中能夠靈活運用橢圓方程解決實際問題。通過本課的學(xué)習(xí),相信學(xué)生能夠?qū)E圓方程有更深入的理解,提高數(shù)學(xué)素養(yǎng)和解決實際問題的能力。

式與方程教案【篇3】

簡易方程這一小節(jié)的前面主要是復(fù)習(xí)、歸納小學(xué)學(xué)過的 有關(guān)方程的基本知識,提出了算術(shù)解法與代數(shù)解法的說法,以便以后逐步講述代數(shù)解法的優(yōu)越性。

分析 方程(1)的左邊需減去 ,根據(jù)等式的性質(zhì)(2),必須兩邊同時減去 ,得 ,方程的左邊需要乘以3,使 的系數(shù)化為1,根據(jù)等式的性質(zhì)(3),必須兩邊同時乘以3,得 ,方程(2)的解題思路與(1)類似。

兩邊都乘以3,得 。

(2)方程兩邊都加上6,得 。

方程兩邊都乘以 ,得 ,即 。

注意:(1)根據(jù)方程的解的概念,我們可以將所得結(jié)果代入原方程檢驗,如果左邊=右邊,說明結(jié)果是正確的,否則,左邊≠右邊,說明你求得的x的值,不是原方程的解,肯定計算有錯誤,這時,一定要細(xì)心檢查,或者再重解一遍.

(2)解簡易方程時,不要求寫出檢驗這一步.

例3甲隊有54人,乙隊有66人,問從甲隊調(diào)給乙隊幾人能使甲隊人數(shù)是乙隊人數(shù)的 ?

分析此題必須弄清:一、甲、乙兩隊原來各有多少人;二、變動后甲、乙兩隊各有多少人(注意:甲隊減少的人數(shù)正是乙隊增加的人數(shù));三、題中的等量關(guān)系是:變動后甲隊人數(shù)是乙隊人數(shù)的 ,即變動后甲隊人數(shù)的3倍等于乙隊人數(shù).

解? 設(shè)從甲隊調(diào)給乙隊x人,

則變動后甲隊有 人,乙隊有 人,根據(jù)題意,得:

1.判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.

(1)3y-1=2y;? (2)3+4x+5x2;? (3)7×8=8×7? (4)6=0.

2.根據(jù)條件列出方程:

(l)某數(shù)的一半比某數(shù)的3倍大4;

(2)某數(shù)比它的'平方小42.

3.檢驗下列各小題括號里的數(shù)是不是它前面的方程的解:

1.請學(xué)生回答以下問題:

(1)本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

(2)方程與代數(shù)式,方程與等式的區(qū)別是什么?

(3)如何列方程?

2.教師在學(xué)生回答完上述問題的基礎(chǔ)上,應(yīng)指出:

(1)方程、等式、代數(shù)式,這三者的定義是正確區(qū)分它們的唯一標(biāo)準(zhǔn);

(2)方程的解是一個數(shù)值(或幾個數(shù)值),它是使方程左、右兩邊的值相等的未知數(shù)的值它是根據(jù)未知數(shù)與已知數(shù)之間的相等關(guān)系確定的.而解方程是指確定方程的解的過程,是一個變形過程.

1.根據(jù)所給條件列出方程:

(1)某數(shù)與6的和的3倍等于21;

(2)某數(shù)的7倍比某數(shù)大5;

(3)某數(shù)與3的和的平方等于這數(shù)的15倍減去5;

(4)矩形的周長是40,長比寬多10,求矩形的長與寬;

(5)三個連續(xù)整數(shù)之和為75,求這三個數(shù).

2.檢驗下列各小題括號里的數(shù)是否是它前面的方程的解:

(3)x(x+1)=12,(x=3,x=4).

式與方程教案【篇4】

1.復(fù)習(xí)方程概念。

什么是方程?你能舉出方程的例子嗎?(老師板書出方程的例子)這里用字母表示等式里的什么?指出:字母還可以表示等式里的未知數(shù)。含有未知數(shù)的等式就叫方程。(板書定義)

判斷下面是不是方程:3X+56+8=146X=157X+315(通過這個教學(xué)使學(xué)生充分理解方程的定義)讓學(xué)生先獨立解課本P61.T1.兩道解方程的題目再讓學(xué)生說說是怎樣解的。通過這里的兩道練習(xí)復(fù)習(xí)小學(xué)所學(xué)習(xí)的解方程的方法(即根據(jù)等式的性質(zhì)來解。)2.解簡易方程。復(fù)習(xí)61頁第二題首先讓學(xué)生找出這三個題的等量關(guān)系,讓學(xué)生分小組討論討論,在小組內(nèi)說一說怎樣找的等量關(guān)系。然后請學(xué)生在班內(nèi)匯報一下。再請三位同學(xué)演板,并請演板的同學(xué)解釋自己的做法。(在這個過程中,讓學(xué)生首先學(xué)會找出題目的等量關(guān)系,再根據(jù)等量關(guān)系去列方程,使學(xué)生養(yǎng)成用方程解決問題的時候,要懂得方程是根據(jù)等量關(guān)系列出的。)集體訂正:解(1)方程是怎樣想的,檢查解方程時每一步依據(jù)什么做的。(2)方程與(1)有什么不同,解方程時有什么不同? 師生共同小結(jié)解方程的一般步驟(略)。怎樣檢驗方程的解對不對? 增加找數(shù)量關(guān)系練習(xí)。1.六一班有50人,其中男生有28人,女生有多少人?2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?首先讓學(xué)生獨立找出題目中的等量關(guān)系,然后讓同桌2人互相說一說,然后再解答。

式與方程教案【篇5】

解方程教學(xué)設(shè)計

山前小學(xué)——陳曉露

【教學(xué)目標(biāo)】

1、幫助學(xué)生能根據(jù)等式的性質(zhì)解較簡單的方程。

2、通過探究極簡單的方程的解法,培養(yǎng)利用已有知識解決問題的意識和能力。

3、培養(yǎng)規(guī)范書寫和自覺檢查的習(xí)慣。

教學(xué)重點 :根據(jù)等式的性質(zhì)解較為簡單的方程。

難點 :利用天平平衡原理解方程時,使方程左邊只剩一個X。以及利用加減法解方程。

【教學(xué)準(zhǔn)備】

自制天平道具 ,小黑板

【教學(xué)過程】

一 創(chuàng)設(shè)情景,回顧舊知。

1、創(chuàng)設(shè)情景“聽說畫”。

讀一段思考材料:有一個天平,左邊有一個蘋果,2個梨子,右邊有4個梨子。如果兩邊同時去掉2個梨子,天平還保持平衡嗎?

師 :今天我們就利用天平保持平衡的道理來幫助我們解決一個數(shù)學(xué)問題。

出示課題 :解方程。

設(shè)計意圖 :在一開始利用這段難度很低的思考題活躍了課堂氣氛,順氣自然引出本課的課題,并激活學(xué)生的參與意識。

二 提出問題,探究新知。

1、示例題1。

(1) 提出問題。

師:能否用方程解答這個問題?

請生列出程 :

x + 3 = 9 (教師板書 )

師 :盒子里有幾個球?

相信這個問題對同學(xué)們來說一定非常的簡單,不過我們現(xiàn)在來探索如何利用天平保持平衡的道理來解方程。

(2) 探究解法。

師 :我們來研究解決這個方程的放法。請同學(xué)們看圖。

(出示自制的天平道具 :講解用

■表示X ,■表示一個球。)

師 :為了求X代表幾個球,哪種方法最好?

請同學(xué)們操作并思考:

① 你打算怎么樣讓天平保持平衡? ② 哪種讓天平保持平衡的方法可以很容易地看出X代表幾個球?

學(xué)生獨立思考交流后,展示他們的方法,進(jìn)一步明確:從天平兩邊同時去掉三個球,使天平左邊只剩X ,就可以看出X代表6個球。 (在道具上操作)

師 :方程的兩邊同時減去2,z左右兩邊仍然相等嗎?減去1呢?為什么要從方程兩邊同時減去3,而不是減去其他數(shù)呢?

(再次強調(diào)為了可以很容易地看出X代表幾,最好的方法是使左邊只剩X。)

小結(jié):在方程兩邊同時減去一個數(shù),左右兩邊仍然相等。

師:能不能把這個變換過程在方程上表示出來?試一試。

交流學(xué)生的做法。

教師板演:

x + 3 = 9

解:

x + 3 -3 = 9 -3

x = 6

(3) 規(guī)范書寫格式、指導(dǎo)驗算。

請學(xué)生看課本解方程的書寫格式。

師 :書寫解方程的過程要注意寫什么?

教師板書規(guī)范書寫格式,強調(diào)解方程每一步得到的都是等式,而不是遞等式,注意等號對齊。

請學(xué)生自己在練習(xí)紙上再書寫一遍,同桌間相互檢查。

師 :怎么樣檢驗x=6是不是正確答案呢?

指名請學(xué)生回答,教師板書。

師:同學(xué)們真的很棒,通過學(xué)習(xí)大家已經(jīng)知道如何利用天平保持平衡的原理解方程了,也知道怎么驗算,那我們現(xiàn)在就來練練吧。

出示練習(xí)題:

x + 5 = 15

(4)探究利用加減法解方程。

師 :同學(xué)們,你們還有其他方法解方程嗎?

請生動手操作并思考。

總結(jié):利用加減法的關(guān)系,x在這個算是中是一個加數(shù),它等于和減去另一個加數(shù)。

請生板演,板演過程中教師指導(dǎo)學(xué)生規(guī)范書寫,最后請學(xué)生集體口頭驗算。

師 :你們喜歡那種方法?請選你喜歡的方法解方程。

三 強化認(rèn)知,鞏固提高。

1、基礎(chǔ)練習(xí),完成課本第59頁做一做第

1、2題。 全班練習(xí),指名板演,交流方法,

2、看圖列方程并解方程。

3、x – 3 = 6

請學(xué)生思考該怎么解方程 。

四、全課總結(jié),質(zhì)疑問難。

師 :談?wù)勥@節(jié)課的收獲。還有什么問題?

【課后反思】

設(shè)計這節(jié)課之前曾經(jīng)和學(xué)校的一位老師討論過思路,在她的幫助下才完成了這份教案, 上完課后真的有很多感想。這堂課我上的最失敗的地方就是在整個過程太強硬的按著教案來上。這課的主要目標(biāo)是利用天平保持平衡的原理和加減法這兩種方法解方程,其實我把重心放在了后者——加減法,我認(rèn)為這種方法在今后解方程過程中更實用。在一開始是提出問題,打算引出天平方法,但是班級里有一位很聰明孩子在一開始就直接說出了加減法的方法,其實在那時候我可以先講加減法,再探究天平法?,F(xiàn)在回想起來,自己上課缺少了靈動性,在今后的教學(xué)中我會注意的。上完這節(jié)課后,學(xué)生的驗算鞏固地特別好,但是方程的書寫方面還有少數(shù)存在問題,還有關(guān)于天平法減去或者加上多少的問題才更容易求解,在今后都要重新鞏固加強的。

式與方程教案【篇6】

第五章 一元一次方程

2.解方程(二)

山西省實驗中學(xué) 賈麟香

一、學(xué)生起點分析: 學(xué)生在上一節(jié)已經(jīng)掌握了用移項法則解一元一次方程,用等式的基本性質(zhì)二將方程中未知數(shù)的系數(shù)化為1,從而轉(zhuǎn)化方程為x=a(a為常數(shù))的形式,也做的很好.

二、學(xué)習(xí)任務(wù)分析:

第一課時要求學(xué)生完成用等式基本性質(zhì)一解方程,分析、觀察、歸納出用移項法則,從而簡化解方程的步驟.第二課時,讓學(xué)生體會當(dāng)方程左右兩邊含有括號時,如何通過去括號法則將方程化簡再運用等式的基本性質(zhì)一、二使方程變形到“x=a(a為常數(shù))”的形式.

三、教學(xué)目標(biāo)

知識與技能:

1、學(xué)習(xí)含有括號的一元一次方程的解法.2、進(jìn)一步體會解方程是運用方程解決實際問題重要環(huán)節(jié).過程與方法:通過觀察、思考,使學(xué)生探索方程的解法,經(jīng)歷和體驗用多種方法解方程,提高解決問題的能力.情感態(tài)度與價值觀:通過對與學(xué)生生活貼近的數(shù)學(xué)問題的探討,使學(xué)生在動手、獨立思考、的過程中,進(jìn)一步體會方程模型的作用,體會學(xué)習(xí)數(shù)學(xué)的實用性.

四、教學(xué)過程設(shè)計:

環(huán)節(jié)一:小組討論,引入課題

內(nèi)容:設(shè)置問題串,請同學(xué)回答

1.上課時解一元一次方程的題型有什么特點? 2.本節(jié)課的一元一次方程有什么特點?與上課時的題型差異何在?

1 / 4 目的:因為解一元一次方程不同類型的方程簡化方程到“x=a(a為常數(shù))”的手段不同,所以必須培養(yǎng)學(xué)生善于分析觀察題中所給信息的習(xí)慣及能力. 我們知道,一個優(yōu)秀學(xué)生的首要標(biāo)志就是“不懼生”,即對生面孔的題目總有自己的分 析方式,處理策略,解決辦法,那么這些能力的培養(yǎng)是離不開教師在教學(xué)過程中,盡可能多地設(shè)置讓學(xué)生自主發(fā)現(xiàn)、獨立探索思考的機會的.即便錯誤很多,只要思考就是好的開始. 實際效果:

同學(xué)能很清楚地用自己的語言說出自己的看法.認(rèn)為:

1.課時的內(nèi)容與課本上的內(nèi)容有承接關(guān)系. 2.本課時增加了方程中含有括號的表達(dá)形式,需先去括號,這樣就化成上課時所學(xué)內(nèi)容了. 3.去括號要注意括號系數(shù)為負(fù)系數(shù)的問題.

環(huán)節(jié)二:合作學(xué)習(xí)

內(nèi)容:請同學(xué)們分析理解156頁圖解題.1.由同學(xué)根據(jù)圖示編出一道合理的應(yīng)用題.2.比較此題與本章節(jié)第一節(jié)引例的實際問題有何區(qū)別?

目的:進(jìn)一步讓學(xué)生體會數(shù)學(xué)中問題的提出大都是因人們的生活實踐需要,因社會的發(fā)展需要,實際問題的“數(shù)學(xué)化”,數(shù)學(xué)服務(wù)于生活實際隨處可見. 在學(xué)生由圖示內(nèi)容編題過程中,讓學(xué)生強化“三種語言”的互話能力.即:文字語言,符號語言和圖例語言之間的互相轉(zhuǎn)化.學(xué)生著方面能力的培養(yǎng)在教師授課的過程中需要引起關(guān)注,將是一個事半功倍的方法,尤其是設(shè)法充分利用教材中所呈現(xiàn)內(nèi)容這一資源,顯得尤為重要. 調(diào)動學(xué)生自主分析及合作學(xué)習(xí)的積極性,由學(xué)生觀察分析得出本例與以前北京題目的差

異,發(fā)展學(xué)生的自主分析能力及強化差異意識,不失為此例的一個功能,即使應(yīng)給予關(guān)注.實際效果:

1、同學(xué)完整編出此題:

小林到超市,準(zhǔn)備買1聽果奶和4聽可樂,小明告訴他一聽可樂比一聽果奶貴5角錢, 小林給了營業(yè)員20元錢,找回了3元,大家?guī)椭×炙闼阋宦牴?,一聽可樂各是多少錢?

完成的過程體現(xiàn)出學(xué)生對圖例中已知、未知等相關(guān)方面的信息掌握全面,梳理清晰,表達(dá)準(zhǔn)確.

2 / 4 3、本例及本章節(jié)的背景問題,學(xué)生們發(fā)現(xiàn)設(shè)問中的未知量由原來的一個增加到現(xiàn)在的兩個,并給出完整的解答過程。這些方面學(xué)生都能很完整、準(zhǔn)確地給予書面語言的表達(dá),完成得非常好,為后續(xù)課程的學(xué)習(xí)奠定了很好的基礎(chǔ).

環(huán)節(jié)三:探索交流,深化認(rèn)識

內(nèi)容:1.課本157頁,例4解方程 -2(x-1)=學(xué)生自編一個類似例4的題目,用不同的方法給予解答.目的:一方面讓學(xué)生繼續(xù)鞏固含括號的一元一次方程的解法;另一方面讓學(xué)生感受將(x-1)或其他的未知數(shù)的代數(shù)式看成整體的數(shù)學(xué)思想.實際效果:

學(xué)生在解答此類問題時,總是習(xí)慣先去括號,轉(zhuǎn)化成第一課時的方程形式求解,用整體的觀念解方程還不夠熟練. 編題:解方程:

1、1-(x+1)=、2(2x-1)-1=3(2x-1)+、

32(1?x)?3?(1?x)?有些學(xué)生在編題過程中能表現(xiàn)出他們對此類問題理解的準(zhǔn)確性與深刻性;知識體系自建的合理性與健全性.知識內(nèi)化的深入與到位也是非常令人高興的.

環(huán)節(jié)四:鞏固提高

內(nèi)容:課本175頁隨堂練習(xí) 方式:條測

實際效果:學(xué)生基本能夠準(zhǔn)確解答此類含括號的一元一次方程,用整體的思想解答問題,這一點學(xué)生使用的比較習(xí)慣,說明學(xué)生對此處滲透的接受程度較高.

環(huán)節(jié)五:課堂小結(jié)

內(nèi)容:學(xué)生之間交流后,將課堂小結(jié)謄寫在筆記本上.目的:學(xué)生的課堂小結(jié)看似簡單,但是卻反映學(xué)生知識內(nèi)化的重要方面,這個過程的實現(xiàn),通過學(xué)生的書面表達(dá)完成,更能體現(xiàn)了學(xué)生的綜合能力.

3 / 4

環(huán)節(jié)六:布置作業(yè)

課后反思: 創(chuàng)造性地使用教材,是教師的主導(dǎo)作用的體現(xiàn).本課時教材在使用時至少有三處貫穿了這樣的思想.教師這個“教練”、“導(dǎo)演”應(yīng)該引導(dǎo)學(xué)生充分利用其課文內(nèi)在的資源,使其發(fā)揮最大的作用.如:

(1)開始引例“圖示”的內(nèi)容,讓學(xué)生用其素材編題.(2)本例解題過程回答題中兩個未知量的解答環(huán)節(jié).(3)通過讓學(xué)生自編用整體思想解答的方程.這些環(huán)節(jié)的設(shè)置,對系統(tǒng)地、全面地培養(yǎng)學(xué)生捕捉信息、分析信息和處理信息的能力有非常大的作用,對學(xué)生課上反思、課上內(nèi)化知識的能力提高.作為教師,應(yīng)該長期堅持與學(xué)生在這方面切磋、探索,把課堂充分還給學(xué)生,充分尊重學(xué)生的個性思維,引導(dǎo)學(xué)生構(gòu)建自己的認(rèn)知結(jié)構(gòu),并給予適時調(diào)控和指導(dǎo).

4 / 4

式與方程教案【篇7】

本節(jié)課是青島版四年級下冊第一章,簡易方程的解法是數(shù)學(xué)中比較重要的一種數(shù)與代數(shù)的解法。這部分內(nèi)容是在用字母表示數(shù)、列方程的知識基礎(chǔ)上進(jìn)行的。教材密切聯(lián)系學(xué)生已有的生活經(jīng)驗和學(xué)習(xí)經(jīng)驗,淡化抽象的數(shù)學(xué)概念,從不同角度提供有利于學(xué)生探索并理解簡單方程解法,讓學(xué)生體會生活中存在大量簡單方程,從而引發(fā)學(xué)生的討論和思考,并通過對具體問題的討論,使學(xué)生認(rèn)識成簡單方程在生活中的廣泛存在,并為之后學(xué)習(xí)一般方程的解法奠定基礎(chǔ)。

學(xué)生在學(xué)習(xí)本節(jié)課之前,已經(jīng)學(xué)習(xí)過用字母簡易的表示數(shù),并能夠根據(jù)已知條件快速列出簡易方程,體會到字母表示數(shù)的簡便性,能判斷出等式的變量,為這節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。在尊重學(xué)生已有的學(xué)習(xí)基礎(chǔ)上,讓學(xué)生在具體情境中體會簡易方程。本節(jié)課的教學(xué)應(yīng)注重通過對具體問題的討論和分析,幫助學(xué)生直觀的認(rèn)識簡易方程的意義,并進(jìn)行求解。我所面對的學(xué)生心智尚未發(fā)育成熟,對抽象字母的理解應(yīng)用能力正在提升中。

根據(jù)以上對教材的分析和學(xué)情的把握,我確定了如下三維教學(xué)目標(biāo):

只有明確了教學(xué)重難點,教學(xué)才能有起伏,課堂才不至于沉悶,教師才能有針對性的教學(xué),從而確定相應(yīng)的教學(xué)方法,本節(jié)課我運用到的教學(xué)方法如下:情景設(shè)置法,小組討論法和講授法。

首先是導(dǎo)入環(huán)節(jié),在導(dǎo)入部分我運用設(shè)置情景法,展示一張畫有小學(xué)生喜愛的金絲猴館的卡通畫,圖片上在進(jìn)行稱量金絲猴的活動,并請學(xué)生根據(jù)圖片自由提出問題,學(xué)生們會提出金絲猴有多重這樣的問題。

設(shè)計意圖:激發(fā)學(xué)生的學(xué)習(xí)興趣,吸引學(xué)生的注意力,并能夠引出本節(jié)課的課題――簡易方程的解法。

新課展開時,我將方程與生活中的天平相聯(lián)系,用準(zhǔn)備好的天平給學(xué)生進(jìn)行增加砝碼與減少砝碼的演示,并保證天平兩端的平衡。

設(shè)計意圖:通過直觀的視覺沖擊與自己動手操作參與課堂,既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又非常有利于學(xué)生理解等式的性質(zhì)。

再設(shè)置小組討論,學(xué)生根據(jù)天平兩端的增減砝碼從直觀到抽象,進(jìn)行交流得出簡易方程的解法并進(jìn)行歸納總結(jié)。

設(shè)計意圖:該問題有一定的難度,是從直觀到抽象的過程,但通過學(xué)生的交流合作,思維碰撞,學(xué)生自己可以嘗試著找到其中的結(jié)論,同時學(xué)生的合作交流能力得以鍛煉提高。

在鞏固深化過程中,我采用逐層深入的方式進(jìn)行鞏固提升,并在布置課后練習(xí)時注意聯(lián)系生活,只有將學(xué)習(xí)內(nèi)容融合到生活中,回歸到生活中才能培養(yǎng)學(xué)生學(xué)以致用的能力,養(yǎng)成學(xué)以致用的思維模式。

在小結(jié)作業(yè)時,我牢記將課堂還給學(xué)生,體現(xiàn)學(xué)生的主體地位的新課改理念,請學(xué)生來談一談這節(jié)課的收獲,學(xué)生將會從知識與技能,過程與方法以及情感態(tài)度與價值觀上進(jìn)行總結(jié),我將一步步引導(dǎo)學(xué)生進(jìn)行情感上的升華。并請學(xué)生課后嘗試解決生活中的簡易方程的問題。

板書是一個微型教案,是課堂教學(xué)中師生雙邊活動的縮影,能直觀的反映課堂教學(xué)的全過程,展示教學(xué)的總體思路。提綱式:簡潔、清晰、明了。符合板書設(shè)計的目的性原則、直觀性原則。

式與方程教案【篇8】

圓的一般方程

教學(xué)目標(biāo)(一)知識教學(xué)要點

使學(xué)生掌握圓的一般方程的特點;能夠?qū)A的一般方程轉(zhuǎn)換為圓的標(biāo)準(zhǔn),可以通過方程得到圓心的坐標(biāo)和半徑;圓的方程可以用待定系數(shù)法從已知條件推導(dǎo)出來。

(二)能力訓(xùn)練要點

讓學(xué)生掌握用公式求圓心和半徑的方法,熟練運用待定系數(shù)法從已知條件推導(dǎo)圓法,熟練運用待定系數(shù)法從已知條件推導(dǎo)圓方程,培養(yǎng)學(xué)生用匹配法和待定系數(shù)法解決實際問題的能力。

(3)學(xué)科滲透點

通過對固定系數(shù)法的研究,為基礎(chǔ)知識的深入學(xué)習(xí)打下堅實的基礎(chǔ)數(shù)學(xué)和其他相關(guān)學(xué)科的基本方法?;A(chǔ)知識。

教學(xué)要點: (1)能用匹配法從圓的一般方程求出圓心的坐標(biāo)和半徑; (2) 能用待定系數(shù)法從已知條件推導(dǎo)出圓的方程。

教學(xué)難點:圓的一般方程的特征。

教學(xué)疑點:圓的一般方程要加上約束D2+E2-4F>0?;顒釉O(shè)計

講座、問題、歸納、演示板、總結(jié)、再講座、再演示板。教學(xué)過程

(1)復(fù)習(xí)和介紹新課

前面我們已經(jīng)討論過圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b) 2= r2,現(xiàn)在我們可以展開 x2+y2-2ax-2by+a2+b2-r2=0??梢钥闯觯我鈭A的方程都可以寫成x2+y2+Dx+Ey+F=0。請想一想:x2+y2+Dx+Ey+F=0形狀的方程的曲線是圓嗎?讓我們深入研究一下這個問題。審查導(dǎo)致主題“圓的一般方程”。

(2)圓一般方程的定義

1.分析方程x3+y2+Dx+Ey+F=0表示的軌跡

通過公式左邊x2+y2+Dx+Ey+F=0:

(1)

(1) 當(dāng)D2+ E2-4F>0,將式(1)與標(biāo)準(zhǔn)方程比較,可以看出方程

是一個有半徑的圓;

(3)當(dāng)D2+E2-4F

此時教師引導(dǎo)學(xué)生得出方程x2+y2+Dx+Ey+F=0的軌跡是圓和

法的結(jié)論。

2. 圓的一般方程的定義

?當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0稱為圓的一般方程。

(3)圓的一般方程的特征請分析以下問題:

問題:比較兩個變量的二次方程的一般形式Ax2+ Bxy+ Cy2+Dx+Ey+F=0。

(2)

帶圓的一般方程

x2+y2+Dx+Ey+F=0, (D2+E2-4F>0) 。

(3) 從

的系數(shù)可以得出什么結(jié)論?鼓勵學(xué)生得出結(jié)論。

二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0時有條件: (1) x2和y2的系數(shù)相同且不等于0,即A=C≠0; (2)沒有xy項,即B=0; (3) D2+E2-4AF>0。

就是圓的意思。條件(3)用同一個方程除以 A 或 C 不難得出。老師還強調(diào):

(1) 條件(1)和(2)是必要條件,但不是充分條件用二次方程(2)來表示一個圓; (2) 條件(1)、(2)和(3)一起是二次方程(2)表示圓的充要條件。 (4) 應(yīng)用與實例

和圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2一樣,方程x2+y2+Dx+Ey+F=0也包含三個系數(shù)D , E, F,所以必須有三個獨立的條件來確定一個圓。在下面看看他們的應(yīng)用程序。

示例

1 求下列圓的半徑和圓心坐標(biāo):(1)x2+y2-8x+6y=0, (2)x2+y2+2by=0 .

這個例子是學(xué)生做的,老師糾正錯誤,給出正確答案:(1)圓心為(4,-3),半徑為5; (2) 圓心為(0, -b) ),半徑為|b|,注意半徑不是b。

同時強調(diào):從圓的一般方程求圓心的坐標(biāo)和半徑,一般采用匹配法,必須掌握。示例

2 求一個圓通過三個點O(0,0)、A(1,1) 和B(4,2) 的方程。解:設(shè)圓的方程為x2+y2+Dx+Ey+F=0,從圓上的O,A,B,有

解:D=-8,E= 6. F=0,所以求圓的方程為x2+y2-8x+6=0。例2 小結(jié):

1、用待定系數(shù)法求圓方程的步驟:

(1)根據(jù)題意,設(shè)圓圈為標(biāo)準(zhǔn)公式或通用公式; (2)根據(jù)條件或D、E、F的方程列出a、b、r的信息;

2.關(guān)于什么時候設(shè)置圓的標(biāo)準(zhǔn)方程,什么時候設(shè)置圓的一般方程:一般來說,如果從圓心坐標(biāo)和半徑容易求出在已知條件下,或者需要使用圓心坐標(biāo)和半徑方程時,往往需要設(shè)置圓的方程。標(biāo)準(zhǔn)方程;如果已知條件與圓心的坐標(biāo)或半徑?jīng)]有直接關(guān)系,通常會設(shè)置圓的一般方程??聪旅娴睦樱?/p>

例子

3 在直線l上求圓心:x+y=0,過兩個圓C1:x2+y2-2x+10y-24=圓在0與交點處的方程C2:x2+y2+2x+2y-8=0。

(0,2)。

設(shè)求圓的方程為(x-a)2+(y-b)2=r2,因為兩點都在求圓上,圓心在直線l上,所以方程組是

所以要求圓的方程是:(x+3)2+(y-3)2=10。

這時老師指出:

(1)從已知條件,很容易求出圓心的坐標(biāo),半徑,或者使用圓心坐標(biāo)和半徑方程。標(biāo)準(zhǔn)方程。

(2) 這個問題也可以通過圓系統(tǒng)方程來求解: 設(shè)待求圓的方程為:

x2+ y2-2x+10y-24 +λ(x2+y2 +2x+2y-8)=0(λ≠-1) 整理公式:

從圓心開始在直線l上,λ=-2。

將λ=-2代入假設(shè)方程,得到求圓的方程為x2+y2+6x-6y+8=0。這個方法會在圓與圓的位置關(guān)系中介紹,這里給同學(xué)們留個懸念。

,求這條曲線的方程,畫出曲線。本例中,請兩名學(xué)生下棋,老師巡視,并提醒學(xué)生:

(1)由于曲線表示的圖形是未知的,曲線方程只能由軌跡法,在曲線 M(x , y) 上任意一點,可以通過求曲線方程的一般步驟得到;

(2)把圓的一般方程寫成標(biāo)準(zhǔn)方程,然后畫出圓心、半徑、圖形的坐標(biāo)。 (5)小結(jié)

1.圓的一般方程的定義和特點; 2. 2. 用匹配法找出圓心坐標(biāo)和半徑; 2. 用待定系數(shù)法,推導(dǎo)出圓的方程。

V.布置作業(yè)

1. 求下列圓的一般方程:

(1) 過點A(5, 1),圓心在點 C(8, -3); (2)經(jīng)過A(-1, 5 ), B(5, 5), C(6, -2)三個點。

2.求通過兩個圓的交點x2+y2+6x-4=0和x2+y2+6y-28=0的圓的方程,其圓心在x-y線上-4=0。

3. 等腰三角形的頂點是A(4, 2),底邊的一個端點是B(3, 5)。找到另一個端點的軌跡方程,并說明它的軌跡是什么。

4. A、B、C是已知直線上的三個不動點,移動點P不在這條直線上,令∠APB=∠BPC,求其運動軌跡移動點 P.

作業(yè)答案:

1. (1)x2+y2-16x+6y+48=0 (2)x2+y2-4x-2y-20 =0 2. x2+y2-x+7y-32=0 3.所需軌跡方程為x2+y2-8x-4y+10=0(x≠3,x≠5),軌跡為

4。以B為原點,直線ABC為x軸建立笛卡爾坐標(biāo)系,令A(yù)(-a, 0), C(c, 0) (a>0, c>0), P(x, y),可得方程為:

(a2-c2)x2+(a2-c2)y2-2ac(a+c)x=0。

當(dāng)a=c時,則x=0(y≠0),即從y軸移開原點; 當(dāng)a≠c時,則(x-

和x軸的兩個交點。

式與方程教案【篇9】

北師大版四年級下冊

方程

一.教學(xué)內(nèi)容

教材第88-90頁“方程” 二.教材分析

方程表示的是現(xiàn)實世界中的等量關(guān)系,根據(jù)具體問題中的數(shù)量關(guān)系,列出數(shù)量關(guān)系,列出方程。 三.學(xué)情分析

方程相對學(xué)生來言,比較抽象,也較為難理解。所以教學(xué)中要多創(chuàng)設(shè)情境和充分利用學(xué)生熟悉的實物來幫主學(xué)生掌握和理解知識。 四.教學(xué)目標(biāo)

1.知識與技能:

結(jié)合具體情境,了解方程的含義;會用方程表示簡單情境中的等量關(guān)系。

2.過程與方法:

經(jīng)歷從具體情境中找數(shù)量的相等關(guān)系的過程,培養(yǎng)學(xué)生用數(shù)學(xué)語言表達(dá)數(shù)學(xué)知識的能力。

3.感情態(tài)度與價值觀:

在問題情境中感受生活中存在大量的等量關(guān)系,體驗數(shù)學(xué)知識與生活的密切聯(lián)系。

五.重點、難點

1.重點:了解方程的含義,會用方程表示簡單的等量關(guān)系。

突破方法:借助教具天平來理解方程的概念。

2.難點:會用方程表示簡單的等量關(guān)系。

突破方法:分析數(shù)量之間的關(guān)系。 六.教法與學(xué)法

教法:講解演示。

學(xué)法:觀察、比較、分析。 七.教學(xué)準(zhǔn)備

天平

八.教學(xué)過程

(一)談話引入

同學(xué)們,玩過蹺蹺板嗎?誰能描述玩蹺蹺板的情形? 請學(xué)生自由回答。

總結(jié):玩蹺蹺板的時候,如果兩邊的重量不一樣,重的一邊就會把輕的一邊翹起來;當(dāng)兩邊的重量相等時,蹺蹺板就平衡了。根據(jù)這種現(xiàn)象,科學(xué)家設(shè)計出了天平。今天老師也帶來了簡易天平,我們用它來做個小實驗。

【設(shè)計意圖】:讓學(xué)生從熟悉的游戲引入,既讓學(xué)生深刻體會了“平衡”,又能較好的激發(fā)學(xué)生的學(xué)習(xí)興趣。

(二)探索新知

1.教材第88頁情境圖

(1)同學(xué)們,你從圖中看到了什么?

指名說明情況:天平的左邊有一顆櫻桃和5克的砝碼,右邊有10克砝碼,天平的指針在中間,說明天平平衡。

(2)天平平衡說明了什么呢?

天平兩邊的質(zhì)量相等。

(3)如果用x表示櫻桃的質(zhì)量,你能根據(jù)天平平衡寫出一個等式嗎?每位同學(xué)在紙上寫一寫,試一試。指名學(xué)士匯報。

X+5=10 同學(xué)們思考一下,X+5表示什么意思?10表示什么意思?“=”表示什么意思?

2.教材第88頁月餅圖

(1)你能從圖中看到什么?

4塊月餅的質(zhì)量一共是380克。

(2)你能寫出一個等式嗎?獨立思考,指名匯報。

每塊月餅的質(zhì)量×4=380 (3)如果用y表示每塊月餅的質(zhì)量,你能寫出一個等式嗎?獨立思考,小組交流。

4y=380 (4)思考:4y表示什么意思? 3.教材第88頁水瓶圖

(1)你從圖中看到了什么?指名匯報。

2000毫升的水,剛好倒?jié)M2個熱水瓶和1個杯子,杯子能裝200毫升的水。

(2)你能寫出一個等式嗎?獨立思考,然后小組內(nèi)交流。 2個熱水瓶的容積+200毫升=2000毫升

(3)如果每個熱水瓶能裝z毫升的水,你能用字母表示這個等式嗎?獨立試著寫一寫,小組內(nèi)討論匯報結(jié)果。 2z+200=2000 (4)思考:2z表示什么意思?

4.觀察剛才我們列的幾個等式,他們有什么共同特點?小組內(nèi)交流。

總結(jié):像x+5=10,4y=380這些含有未知數(shù)的等式叫做方程。

現(xiàn)在,請同學(xué)們思考一下,方程一定是等式,那么等式一定是方程嗎? 引導(dǎo)學(xué)生理解:方程一定是等式,但等式不一定是方程。

【設(shè)計意圖】:讓學(xué)生經(jīng)歷分析數(shù)量關(guān)系,尋找等量關(guān)系的過程,理解方程,提高解決問題的能力。

(三)反饋應(yīng)用

教材第81頁“練一練“。

學(xué)生獨立完成,指名學(xué)生說一說列式的理由。

【設(shè)計意圖】:多角度強化對方程的認(rèn)識。知道列方程是要找數(shù)量的相等關(guān)系。

(四)課堂小結(jié)

今天這節(jié)課我們學(xué)了什么內(nèi)容?同學(xué)們知道什么叫方程?怎么樣列方程了嗎? 九.

方程

X+5=10 4y=380

2z+200=2000

含有未知數(shù)的等式叫做方程。

十.教后反思

圖式結(jié)合,可以讓學(xué)生能掌握看圖并用方程表示的方法,學(xué)會用方程表示簡單情境中的數(shù)量關(guān)系。在列方程的過程中,發(fā)展學(xué)生的抽象概括能力。

式與方程教案【篇10】

列方程解決實際問題要找到相等關(guān)系,方程是依據(jù)相等關(guān)系列的。其實,某個實際問題為什么選擇列方程的方法解答,或者為什么選擇列算式的方法解答,經(jīng)常是由相等關(guān)系決定的。所以,兩道例題的教學(xué),都是先找出相等關(guān)系。

相等關(guān)系是一種數(shù)學(xué)模型,它把數(shù)量關(guān)系表達(dá)成等式。列算式解決實際問題要分析數(shù)量關(guān)系,這時的分析著眼于挖掘已知條件之間的聯(lián)系,溝通已知與未知的聯(lián)系,通常把條件作為一個方面,問題作為另一個方面,因而用已知數(shù)量組成的算式求得問題的答案。實際問題里的相等關(guān)系也是數(shù)量間的關(guān)系,它的最大特點是將已知與未知有機聯(lián)系起來,通過已知數(shù)量和未知數(shù)量共同組成的等式,反映實際問題里最主要的數(shù)量關(guān)系。學(xué)生在五年級(下冊)初步感受了相等關(guān)系,能找出簡單問題的相等關(guān)系。本冊教學(xué)尋找較復(fù)雜問題的相等關(guān)系,就應(yīng)充分利用學(xué)生已有的知識經(jīng)驗。

1. 靈活開展思維活動,找出相等關(guān)系。

較復(fù)雜的問題之所以復(fù)雜,在于它的數(shù)量關(guān)系錯綜復(fù)雜。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍數(shù)關(guān)系,也有相差關(guān)系,是兩種關(guān)系的復(fù)合。例2里已知頤和園水面面積與陸地面積一共290公頃,還已知水面面積大約是陸地面積的3倍,這是兩個并列的條件。因此,尋找復(fù)雜問題的相等關(guān)系,要梳理數(shù)量關(guān)系,分清主次和先后。

尋找相等關(guān)系沒有固定的模式照搬、照套,教材從實際問題的結(jié)構(gòu)特點和學(xué)生的思維發(fā)展水平出發(fā),靈活設(shè)計尋找相等關(guān)系的教學(xué)方法。學(xué)生在二年級(下冊)已經(jīng)能解決類似紅花有10朵,求紅花朵數(shù)的2倍少4朵是幾朵的問題,對幾倍少幾這樣的數(shù)量關(guān)系已有初步的理解。因此,例1要求學(xué)生找出大雁塔與小雁塔高度之間的相等關(guān)系,讓他們利用已有的倍數(shù)概念和相差概念,通過推理,把比小雁塔的2倍少22米改寫成數(shù)學(xué)式子小雁塔高度2-22,從而得到相等關(guān)系。例1為什么提出還可以怎樣列方程,這是由于同一個幾倍少幾的關(guān)系,可以寫出不同的相等關(guān)系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小組里交流想法是尊重學(xué)生的思考,允許學(xué)生按自己的想法解題。要注意的是,這里不是要求學(xué)生一題多解。要組織學(xué)生對各種解法進(jìn)行比較,體會它們在概念上是一致的,僅是表現(xiàn)形式不同;還要引導(dǎo)學(xué)生體會例題里呈現(xiàn)的等量關(guān)系,得出答案時的思考比較順,從而自覺應(yīng)用這樣的等量關(guān)系。對于學(xué)生中未出現(xiàn)的相等關(guān)系,不必提及,以免搞亂思路。

怎樣合理利用例2里的兩個并列的已知條件?教材選擇了線段圖。先在表示水面面積的線段上填3x,再在線段圖的右邊括號里填290,在圖上感受水面面積和陸地面積之間的倍數(shù)關(guān)系和相并關(guān)系。然后通過填空寫出等量關(guān)系,體會水面面積和陸地面積一共290公頃是這個實際問題里的等量關(guān)系。

2. 加強寫式練習(xí),進(jìn)一步把握數(shù)量關(guān)系,為列方程打基礎(chǔ)。

含有字母的式子是方程的重要組成部分,根據(jù)數(shù)量關(guān)系列方程時,都要寫出含有字母的式子。是否具有用字母表示數(shù)的意識,能否順利寫出含有字母的式子,對列方程解答實際問題是至關(guān)重要的。因此,教材加強寫式的練習(xí)。

練習(xí)一第2題寫出表示梨樹棵數(shù)的式子3x+15,表示鳊魚尾數(shù)的式子4x-80,都是解答幾倍多幾、幾倍少幾實際問題所需要的基本技能。安排寫式練習(xí),使學(xué)生進(jìn)一步理解數(shù)量關(guān)系,養(yǎng)成順著梨樹比桃樹的3倍多15棵、鳊魚比鯽魚的4倍少80尾這些數(shù)量關(guān)系的表述進(jìn)行思考,并轉(zhuǎn)化成數(shù)學(xué)式子的習(xí)慣,從而選擇最適當(dāng)?shù)南嗟汝P(guān)系解決實際問題。所以,這道練習(xí)題既是寫式訓(xùn)練,也是思路引導(dǎo)。

練習(xí)二第2題是和倍、差倍問題的專項訓(xùn)練。根據(jù)黃花x朵和紅花朵數(shù)是黃花的3倍,先寫出紅花有3x朵,用含有字母的式子表示紅花的朵數(shù),再用x+3x(或4x)表示兩種花一共的朵數(shù),用3x-x(或2x)表示紅花比黃花多的朵數(shù),發(fā)展聯(lián)想能力。聯(lián)想到的式子,正是方程里等號左邊的部分,這道題也在寫式訓(xùn)練的同時,進(jìn)行思路引導(dǎo)。

3. 列方程解答新穎的問題,拓展等量關(guān)系。

本單元安排兩節(jié)練習(xí)課,分別教學(xué)練習(xí)一第6~13題、練習(xí)二第6~11題。著重解答一些與例題不同的實際問題,找到這些問題的等量關(guān)系是教學(xué)重點,也是難點,對發(fā)展數(shù)學(xué)思考非常有益。

練習(xí)一第7題起拓展等量關(guān)系的作用。第(1)小題畫出了三角形,學(xué)生看到圖上的高和底,就能想到三角形的面積計算公式,于是把底高2=三角形的面積作為解題時的等量關(guān)系。第(2)小題利用熟悉的括線表示19.8元的意思,形象顯示了3枝鉛筆的錢+1個文具盒的錢=一共的錢是問題里的等量關(guān)系。教材的意圖是通過這些題打開思路,讓學(xué)生體會不同的問題里有不同的等量關(guān)系,兩個部分?jǐn)?shù)之和往往是可利用的等量關(guān)系。這就為繼續(xù)解答第8、9、12題作了有益的鋪墊。至于第13題,把兩種溫度的換算公式作為等量關(guān)系。公式在題中已經(jīng)揭示,只要在它上面體會已知華氏溫度求攝氏溫度,列方程解答比較好。反之,已知攝氏溫度求華氏溫度,依據(jù)公式能直接列出算式。

例2和練一練分別是典型的和倍、差倍問題,已知的總數(shù)或相差數(shù)是等量關(guān)系的生長點。練習(xí)二第7~11題的題材和例題不同,且各有特點。但是,等量關(guān)系的載體仍然是已知的總數(shù)與相差數(shù)。第7題用線段圖配合展示題意,便于學(xué)生發(fā)現(xiàn)小麗走的米數(shù)+小明走的米數(shù)=兩地相距的米數(shù)這一等量關(guān)系,并把這個經(jīng)驗遷移到解答后面的習(xí)題中去。

式與方程教案【篇11】

方程。(教材第66、67頁)

1.結(jié)合具體情境,理解方程的含義,會用方程表示簡單情境中的等量關(guān)系,初步體會方程和等式之間的關(guān)系。

2.通過觀察、比較和分析,能從具體生活情境中尋找等量關(guān)系,會用含有未知數(shù)的等式表示等量關(guān)系。

3.在學(xué)生大膽猜測、積極驗證的過程中,體會方程與現(xiàn)實生活的密切聯(lián)系,產(chǎn)生學(xué)習(xí)方程解法的愿望。

重點:了解方程的含義,初步體會方程與等式之間的關(guān)系。 難點:會用方程表示簡單的等量關(guān)系。

多媒體課件。

(課件出示教材第66頁關(guān)于天平的情景圖) 教師:認(rèn)真觀察天平,你發(fā)現(xiàn)了什么? 學(xué)生:天平正好平衡。

教師:你能用我們上節(jié)課學(xué)習(xí)的等量關(guān)系表示嗎? 學(xué)生:10克=櫻桃的質(zhì)量+2克。

教師:上節(jié)課的知識,同學(xué)們掌握得真不錯。(課件出示教材第66頁關(guān)于盒裝種子和倒水

1 問題的情景圖)你能說出下面兩個圖中的等量關(guān)系嗎?為什么?

學(xué)生:每盒種子的質(zhì)量×4=2000克。 教師:能說說理由嗎?

學(xué)生:觀察圖可以知道,4盒種子的質(zhì)量一共是2000克,所以等量關(guān)系是每盒種子的質(zhì)量×4=2000克。

教師:思路真清晰。誰能說出另一幅圖中的等量關(guān)系?

學(xué)生:觀察圖可以知道,1熱水壺的水剛好倒?jié)M了2個熱水瓶和1個水杯,所以等量關(guān)系是2000毫升=每個熱水瓶的盛水量×2+200毫升。

【設(shè)計意圖:這樣的設(shè)計,借助天平平衡、盒裝種子以及倒水問題,讓學(xué)生找出等量關(guān)系,既是對上節(jié)課學(xué)習(xí)的復(fù)習(xí),又實現(xiàn)了從等式到方程的鏈接,從而使新的數(shù)學(xué)知識能夠得以生長】

1.教師:我們知道字母可以表示數(shù),現(xiàn)在我們用字母表示櫻桃的質(zhì)量,你能用式子表示天平的等量關(guān)系嗎?以小組形式討論。

學(xué)生小組活動……

2.教師:你們知道怎么表示了嗎?哪個小組的同學(xué)把你們的方法和全班同學(xué)交流一下。注意請先告訴同學(xué)們你是用哪個字母表示,然后再說你是用哪個式子表示天平中的等量關(guān)系。

學(xué)生1:我們用字母x表示櫻桃的質(zhì)量,表示天平中的等量關(guān)系的式子為10=x+2。 學(xué)生2:我們用字母a表示櫻桃的質(zhì)量,表示天平中的等量關(guān)系的式子為10=a+2。 ……

教師:值得肯定的是,上面同學(xué)說的都是正確的。我們發(fā)現(xiàn)只要我們選擇任意一個字母來表示櫻桃的質(zhì)量,然后只要把等量關(guān)系中櫻桃的質(zhì)量換成那個字母就好。你能像上面那樣,表示盒裝種子以及倒水這兩個問題中的等量關(guān)系嗎?

學(xué)生:可以用字母y表示每盒種子的質(zhì)量,表示等量關(guān)系的式子為x×4=2000。 教師:對于表示等量關(guān)系的式子x×4=2000,誰還有不同書寫形式?為什么? 學(xué)生:4x=2000,字母和數(shù)字相乘,乘號可以省略,把數(shù)字寫在字母的前面。

教師:以后我們再遇到數(shù)字和字母相乘的時候一定注意省略乘號,把數(shù)字寫在字母的前面。請用式子表示倒水問題中的等量關(guān)系。

學(xué)生1:用字母z表示每個熱水瓶的盛水量,表示等量關(guān)系的式子為2000=2z+200。 學(xué)生2:用字母b表示每個熱水瓶的盛水量,表示等量關(guān)系的式子為2000=2b+200。 ……

3.教師:觀察上面的這些式子,你發(fā)現(xiàn)了什么?以小組形式討論。 學(xué)生小組活動……

教師:你們發(fā)現(xiàn)了什么?哪個小組的同學(xué)把你們的方法和全班同學(xué)交流一下。 學(xué)生1:這些式子中都有字母。 學(xué)生2:這些式子都是等式。

教師:像上面的這些式子,它們都是含有未知數(shù)的等式,我們把這樣的式子叫方程。

【設(shè)計意圖:通過對比簡潔的數(shù)學(xué)表達(dá)式,了解它們的共同特點,從而揭示方程的定義?!昂形粗獢?shù)”與“等式”是方程定義中兩點最重要的內(nèi)涵】

4.教師:你還能找出生活中的等量關(guān)系,并用方程表示其中的等量關(guān)系嗎?小組之間彼此說一說,寫一寫。

學(xué)生小組之間彼此談?wù)?集體訂正,再次剖析理由。

2 教師:通過剛才的學(xué)習(xí),你發(fā)現(xiàn)了什么? 師生共同歸納:

1.可以用方程表示等量關(guān)系。 2.含有未知數(shù)的等式是方程。

方 程

10=x+2 10=a+2 4x=2000

2000=2z+200 2000=2b+200 含有未知數(shù)的等式叫方程。

1.利用天平這個直觀教具,形象地說明了等式的含義,天平保持平衡時,天平兩邊和等式兩邊之間的關(guān)系,為列方程打下了基礎(chǔ)。

2.結(jié)合具體情境,放手讓學(xué)生找出等量關(guān)系。列出含有未知數(shù)的等式,通過學(xué)生自己列出的三個方程,使他們感受到了方程能刻畫現(xiàn)實生活中的等量關(guān)系。

A 類

1.下面哪些式子是方程,在( )里畫“”。

(1)31-x=12( ) (2)35+65=100 ( ) (3)y+24( )

(4)b÷9=( ) (5)a+27=32( )

(6)x=0( )

2.用式子表示天平的情況。

(考查知識點:方程的含義及表示;能力要求:能正確列方程及判斷是不是方程)

B 類

1.淘氣寫了兩個等式,可是不小心被墨水給弄臟了,猜猜他原來列的是不是方程?

3 (1)6+=18 (2)8+8x=20 2.根據(jù)題意先說等量關(guān)系再列方程。

有100米布,做上衣和裙子各用了b米,還剩余15米。

(考查知識點:方程的含義以及用方程表示等量關(guān)系;能力要求:能根據(jù)實際問題列方程)

課堂作業(yè)新設(shè)計

A 類:

1.(1) (4) (5) (6)

=120 y+50=60 B 類:

1.(1)如果墨水弄臟的部分是未知數(shù),是方程,否則不是。 (2)是方程。 2.等量關(guān)系:做上衣用的米數(shù)+做裙子用的米數(shù)+15米=100米 方程:2b+15=100 教材習(xí)題

第67頁練一練

1.說一說略 (1)x+20=50+20 (2)5x+4=44 (3)4x+6-3=87 (x-5)×4=2x (4)2b+15=100或b+15+b=100 2.(1)x-5+8=15 (2)5x=95 3.(1)y-1 y+1 y-7 y+7 (2)方框中5個數(shù)之和除以5就是該方框中間的數(shù)。 (3)115÷5=23

4

式與方程教案【篇12】

一、模型思想的概念

模型思想是指運用數(shù)學(xué)語言對現(xiàn)實世界的事與物的各類特征、數(shù)量關(guān)系以及空間形式進(jìn)行描述,模型思想簡單而言是一種數(shù)學(xué)思想.新課標(biāo)要求在開展數(shù)學(xué)教學(xué)過程中,要培養(yǎng)學(xué)生的模型思想,這不僅可以有效地讓學(xué)生更好地理解數(shù)學(xué)知識,還可以促進(jìn)學(xué)生與外部世界的聯(lián)系.建立和求解模型的過程包括:從現(xiàn)實生活或具體情境中抽象出數(shù)學(xué)問題,用數(shù)學(xué)符號建立方程、不等式、函數(shù)等表示數(shù)學(xué)問題的數(shù)量關(guān)系和變化規(guī)律,通過模型求出結(jié)果,并用此結(jié)果去解釋、討論它在現(xiàn)實問題中的意義.利用好這種模式,可以促進(jìn)學(xué)生初步形成模型思想,并有效地提高其學(xué)習(xí)數(shù)學(xué)的興趣;有利于學(xué)生初步形成模型思想,提高其學(xué)習(xí)數(shù)學(xué)的積極性與熱情.我們在開展初中數(shù)學(xué)教學(xué)過程中,可以將數(shù)學(xué)符號、表達(dá)式以及圖表作為數(shù)學(xué)模型的主要表達(dá)形式,從這個特征可以發(fā)現(xiàn),模型思想與符號化思想存在著一定的相似點,兩者都屬于基本化思想.對于初中生而言,我們只需把日常生活中的某些問題轉(zhuǎn)換成抽象的數(shù)學(xué)問題,運用數(shù)學(xué)知識解決數(shù)學(xué)問題,再返回到日常生活中進(jìn)行檢驗,這個過程就是我們所說的數(shù)學(xué)建模.

二、初中“,方程”教學(xué)滲入模型思想的作用

1“方程”的教學(xué)內(nèi)容

初中教學(xué)內(nèi)容主要由數(shù)、式、方程、函數(shù)等組成.方程在整個教學(xué)內(nèi)容以及教學(xué)設(shè)計中有著非常重要的作用,不僅銜接著數(shù)與式的學(xué)習(xí),還為后續(xù)的不等式以及函數(shù)的學(xué)習(xí)提供了基礎(chǔ).按教學(xué)大綱以及新課標(biāo)的要求,方程在整個初中數(shù)學(xué)教學(xué)中是學(xué)生學(xué)習(xí)的一個難點,同時也是教師教學(xué)的一個重點.根據(jù)大綱以及新課標(biāo)的要求,筆者歸納了初中方程教學(xué)的內(nèi)容,主要包括以下幾個方面的教學(xué)內(nèi)容:一元一次方程、二元一次方程(組)、一元二次方程和可化為一元一次方程的分式方程等,其中還包括各類方程的解法以及運用每一類方程(組)解決實際問題,內(nèi)容大致又分為方程(組)的概念、各類方程的解法及方程與實際問題等.

2“.方程”教學(xué)滲入模型思想的作用

新課標(biāo)中明確地指出,初中數(shù)學(xué)教學(xué)需利用課堂教學(xué)激發(fā)學(xué)生的學(xué)習(xí)熱情與積極性,需結(jié)合教學(xué)任務(wù)創(chuàng)新能夠引起學(xué)生進(jìn)行數(shù)學(xué)思考的教學(xué)內(nèi)容.教學(xué)過程中,要培養(yǎng)學(xué)生的創(chuàng)新意識,從而提高學(xué)生的創(chuàng)造性思維.前面有所提及,初中數(shù)學(xué)教學(xué)的重點之一為方程教學(xué),而且方程教學(xué)的內(nèi)容具有非常明顯的模型思想,因此,我們可以把模型思想滲入整個初中方程教學(xué)當(dāng)中,這樣不僅有利于培養(yǎng)學(xué)生的應(yīng)用意識,還可以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,能有效地提高初中方程教學(xué)的質(zhì)量.

三、基于模型思想的初中“方程”教學(xué)設(shè)計

我們在開展模型思想教學(xué)設(shè)計時,要想讓學(xué)生能夠真正地理解其基本思想,需要一個長期練習(xí)的過程,而且整個過程需要遵循從簡到繁的原則.只有這樣,才能讓學(xué)生把具體的事物進(jìn)行抽象化,逐漸掌握數(shù)學(xué)建模的方式.經(jīng)過不斷的練習(xí)才能讓學(xué)生習(xí)慣性地遇到數(shù)學(xué)問題時,運用模型思想來進(jìn)行數(shù)學(xué)思維.同時,我們在開展模型思想的初中方程教學(xué)設(shè)計時,還需結(jié)合學(xué)生的實際情況進(jìn)行設(shè)計,從而確保模型思想在初中方程教學(xué)中的作用.下面筆者就通過一個教學(xué)案例來闡述整個教學(xué)設(shè)計的思想以及方法.

1.設(shè)計問題,導(dǎo)入新課

我們?yōu)榱四茼樌亻_展方程教學(xué),需引導(dǎo)學(xué)生抽象出方程相關(guān)概念.教師可以結(jié)合教學(xué)內(nèi)容,運用多媒體向?qū)W生展示教師設(shè)計出的相關(guān)內(nèi)容,這些輔助教學(xué)設(shè)備,同樣可以激發(fā)學(xué)生的學(xué)習(xí)熱情與積極性,能讓我們的教學(xué)設(shè)計更好地吸引學(xué)生.在這個環(huán)節(jié)中,我們可以運用創(chuàng)設(shè)問題情境的方式來導(dǎo)入我們所設(shè)計的教學(xué)內(nèi)容.比如:現(xiàn)在接近五一勞動節(jié)了,許多超市都在打折促銷,那我們知道什么是打折活動嗎?這些商家打折的目的是什么?如果他們打折之后比原來銷售的價格要低,這些商家還會賺錢嗎?通過學(xué)生日常生活中經(jīng)常見到的事物進(jìn)行問題設(shè)計,可以給予學(xué)生更多的思考空間,因為這與他們的生活息息相關(guān),自然可以吸引到學(xué)生的注意,同時也能激發(fā)其興趣.

2.提出問題,引導(dǎo)學(xué)生建立模型

在我們所設(shè)計的教學(xué)環(huán)節(jié)中,有了前面的問題,就可以引導(dǎo)學(xué)生進(jìn)行建模活動了.比如:使用多媒體制作一組超市相關(guān)的圖片,模擬與學(xué)生一起在超市中購買的場景,然后展示出某個商品正在進(jìn)行八折的促銷活動,這時可以再提出問題:假設(shè)這件打折的商品標(biāo)價為200元,現(xiàn)在我們花多少錢就可以買到這件商品?如果我們已經(jīng)知道這件商品的進(jìn)價為90元,那么銷售這件商品,商家可以賺到多少錢?這個學(xué)習(xí)過程就是要引導(dǎo)學(xué)生依照實際問題,進(jìn)行數(shù)學(xué)建?;顒?,利用方程模型,正確地解決實際問題.

3.分組討論,引入正確建模過程

有了前面的鋪墊,到了這個教學(xué)環(huán)節(jié),我們要組織學(xué)生開展數(shù)學(xué)建?;顒?教師可以設(shè)置問題,如:如果現(xiàn)在超市里把某商品按照成本價提高20%,再以八折的優(yōu)惠來進(jìn)行促銷,假設(shè)某件商品可以贏利18元,請問該商品的'成本價為多少?假設(shè)該商品的成本價為x元,我們還可以用含有x的代數(shù)式表示其他的量嗎?在剛才所提問題的內(nèi)容中,含有什么等量關(guān)系?

4.加強練習(xí)難度,深化模型思想

到了這個教學(xué)環(huán)節(jié),我們可以深化學(xué)生的數(shù)學(xué)模型思想.在這個環(huán)節(jié)中,我們可以適當(dāng)提高問題的難度,可以激發(fā)學(xué)生的求知欲,引導(dǎo)學(xué)生進(jìn)行假設(shè),并且要通過自己的努力來解決問題.比如:一臺筆記本電腦按進(jìn)價提高了30%標(biāo)價,剛好遇到五一節(jié),商家進(jìn)行打折促銷,按原價的七折進(jìn)行銷售,現(xiàn)在每臺筆記本電腦的售價為4800元,請問這臺筆記本電腦的成本價是多少?商家銷售出一臺電腦可以獲利多少?隨著問題的提出,教師可以組織學(xué)生進(jìn)行分組討論,引導(dǎo)學(xué)生利用方程模型來解決,讓學(xué)生意識到模型思想在我們生活中的重要性,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

5.總結(jié)知識重點,加深模型思想

學(xué)生經(jīng)過前面的學(xué)習(xí),已經(jīng)對一元一次方程有了一個非常清晰的了解,教師應(yīng)該在這個教學(xué)環(huán)節(jié)中幫助學(xué)生梳理知識,以加深印象.教師可以設(shè)計以下幾個問題讓學(xué)生思考:

(1)對于今天我們學(xué)習(xí)的知識,你有什么收獲?

(2)運用一元一次方程解決實際問題時,正確的建模活動過程是什么?

6.布置不同層次作業(yè),鞏固所學(xué)知識

通過前面知識的引導(dǎo)與學(xué)習(xí),教師在這個環(huán)節(jié)中要布置相應(yīng)的作業(yè),以此鞏固學(xué)生今天所學(xué)到的知識.筆者建議教師根據(jù)學(xué)生的不同層次來進(jìn)行分層布置,從而有效地體現(xiàn)出新課標(biāo)的教學(xué)理念,這有利于不同層次的學(xué)生得到相應(yīng)的發(fā)展.下面是筆者根據(jù)不同層次學(xué)生設(shè)計的課后作業(yè),分為必做題和選做題兩個層次。

必做題

(1)超市把某件商品在進(jìn)價的基礎(chǔ)上提高了30%,然后以九五折進(jìn)行銷售,已知該商品的銷售價格是700元,請問這個商品的進(jìn)價為多少?

(2)蘇寧電器五一活動,把原標(biāo)價為3700元的冰箱以八折進(jìn)行銷售,打折后商家要達(dá)到8萬元的銷售額,那么相比打折以前,銷量應(yīng)增加多少臺?

選做題

(3)由于某手機更新?lián)Q代,手機商家決定打折出售低版本手機.已知現(xiàn)在低版本手機的售價為5600元,新款手機的售價為7800元.假設(shè)低版本手機虧本10%,新版本手機贏利25%,請問手機商家是贏利還是虧本?假如贏利,求出贏利額;假如虧本,求出虧本額。

總之,數(shù)學(xué)知識源于生活,我們在進(jìn)行初中方程教學(xué)設(shè)計時,要結(jié)合學(xué)生的實際生活,不斷地挖掘出問題情境,讓學(xué)生真正理解數(shù)學(xué)問題生活化的意義.數(shù)學(xué)思想方法本身就是一個非常抽象的概念,我們只有通過不斷地設(shè)計出優(yōu)秀的教學(xué)內(nèi)容,才能更好地培養(yǎng)學(xué)生的模型思想,提高初中方程教學(xué)質(zhì)量。

式與方程教案【篇13】

1、理解一元一次方程,以及一元一次方程解的概念。

2、會從題目中找出包含題目意思的一個相等關(guān)系,列出簡單的方程。

3、掌握檢驗?zāi)硞€數(shù)值是不是方程解的方法。

在實際問題的過程中探討概念,數(shù)量關(guān)系,列出方程的方法,訓(xùn)練學(xué)生運用新知識解決實際問題的能力。

讓學(xué)生體會到從算式到方程是數(shù)學(xué)的進(jìn)步,體現(xiàn)數(shù)學(xué)和日常生活密切相關(guān),認(rèn)識到許多實際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。

建立一元一次方程的概念,尋找相等關(guān)系,列出方程。

師:同學(xué)們,老師學(xué)會了一個魔術(shù),情你們配合表演。請看大屏幕,這是20xx年10月的日歷,請你用正方形任意框出四個日期,并告訴老師這四個數(shù)字的和,老師馬上就告訴你這四個數(shù)字。

(1)師:看大屏幕,獨立思考下列問題,根據(jù)條件列出式子。

C。 A、B兩地相距180千米,甲乙兩車分別從A、B兩地出發(fā),相向而行,甲車每小時行駛30千米,乙車得速度是甲車速度的1。5倍,經(jīng)過t小時相遇,則=180

生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+1。5(30t)=180

師:對,含有未知數(shù)的等式叫做方程,等號的兩邊分別叫做方程的左邊和右邊。(現(xiàn)實,學(xué)生齊讀)

2、師:小學(xué)我們學(xué)過簡易方程,并用簡易方程解決應(yīng)用題,對于比較復(fù)雜的實際應(yīng)用題,用方程解答起來更加方便。請自己閱讀課本P/79—81,(課本內(nèi)容略)并把課本空空填寫完整,不懂的和你的同學(xué)交流。還要回答下列問題:

(1)你是如何理解“列方程時,要先設(shè)字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到驗證的方法嗎?

(2)對于這三個問題,分別考慮:

用含x的未知數(shù)分別表示正方形的邊長;

用含x的未知數(shù)表示這臺計算機的檢修時間;

用含x的未知數(shù)分別表示男、女生人數(shù)。

在大多數(shù)學(xué)生完成課本閱讀和解答好課本問題、上述問題的基礎(chǔ)上,請幾名代表學(xué)生匯報所列方程,并解釋方程等號左右兩邊式子的含義。

(2)左右兩邊表示的方法不同。

師:本節(jié)知識也學(xué)完了,你能解釋課前老師魔術(shù)中的幾多秘密?

設(shè)任意框出的四個數(shù)字的第一個為x,則:

生1:x+(x+1)+(x+7)+(x+8)=24;

師:很好!如何算出x的值,是我們下一節(jié)課要探討的問題(繼續(xù)設(shè)疑,激發(fā)學(xué)生的學(xué)習(xí)興趣),但老師想當(dāng)堂檢測一下誰掌握的最多,最好,請看大屏幕。

(2)拓展練習(xí)如下;

D。|10。5x|=0。5yE、

2、已知關(guān)于x的方程ax+b=c的解是x=1,則=

3、下面有四張卡片,請你至少抽出三張卡片編寫兩道一元一次方程,并和你的同學(xué)交流一下,看看你和誰不謀而合!

式與方程教案【篇14】

1.能解簡易方程,并能用簡易方程解簡單的應(yīng)用題。

2.初步培養(yǎng)學(xué)生方程的思想及分析解決問題的能力。

1.針對以往學(xué)過的一些知識,教師請學(xué)生回答下列問題:

(1)什么叫等式?等式的兩個性質(zhì)是什么?

(2)下列等式中x取什么數(shù)值時,等式能夠成立?

在小學(xué)學(xué)習(xí)方程時,學(xué)生們已知有關(guān)方程的三個重要概念,即方程、方程的解和解方程.現(xiàn)在學(xué)習(xí)了等式之后,我們就可以更深刻、更全面地理解這些概念,并同時板書課題:簡易方程.

在等式4+x=7中,我們將字母x稱為未知數(shù),或者說是待定的數(shù).像這樣含有未知數(shù)的等式,稱為方程.并板書方程定義.

例1? (投影)判斷下列各式是否為方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.

(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.

分析:本題在解答時需注意兩點:一是已知數(shù)應(yīng)包括它的符號在內(nèi);二是未知數(shù)的系數(shù)若是1,這個省寫的1也可看作已知數(shù).

式與方程教案【篇15】

1.了解;方程算術(shù)解法與代數(shù)解法的區(qū)別。

1.通過代數(shù)解法解簡易方程的學(xué)習(xí)使學(xué)生認(rèn)識問題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。

2.通過代數(shù)法解簡易方程進(jìn)一步培養(yǎng)學(xué)生運算能力和邏輯思維能力。

1.培養(yǎng)學(xué)生實事求是的科學(xué)態(tài)度,用發(fā)展的眼光看問題的辯證唯物主義思想。

2.滲透化“未知”為“已知”的化歸思想。

通過用新的方法解簡易方程,使學(xué)生初步領(lǐng)略數(shù)學(xué)中的方法美。

1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。注意教學(xué)中民主意識和學(xué)生的主體作用的體現(xiàn)。

2.難點:解方程時準(zhǔn)確把握兩邊都加上(或減去)、乘以(或除以)同一適當(dāng)?shù)臄?shù)。

教師創(chuàng)設(shè)情境,學(xué)生解決問題。教師介紹新的方法,學(xué)生反復(fù)練習(xí)。

引例:班上有37名同學(xué),分成人數(shù)相等的兩隊進(jìn)行拔河比賽,恰好余3人當(dāng)裁判員,每個隊有多少人?

師:該問題如何解決呢?請同學(xué)們考慮好后寫在練習(xí)本上.

學(xué)生活動:回答問題,一個學(xué)生板演,其他學(xué)生比較兩種解法.

問;這兩種解法有什么不同呢?

學(xué)生活動:積極思索,回答問題.(一是列算式的解法,二是列方程的解法).

師:很好.為了敘述問題方便,我們分別把這兩種解法叫做算術(shù)解法和代數(shù)解法.小學(xué)學(xué)過的應(yīng)用題可用算術(shù)方法也可用代數(shù)方法解.有時算術(shù)方法簡便,有時代數(shù)方法簡便,但是隨著學(xué)習(xí)的逐步展開,遇到的問題越來越復(fù)雜,使用代數(shù)解法的優(yōu)越性將會體現(xiàn)的越來越充分,因此,在初中代數(shù)課上,將把方程的知識作為一個重要的內(nèi)容來學(xué)習(xí).當(dāng)然,在開始學(xué)習(xí)方程時,還是要從簡單的方程入手,即簡易方程.引出課題.

相信《式與方程教案范例15篇》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼兒園教案,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準(zhǔn)備了方程教案專題,希望您能喜歡!

相關(guān)推薦

  • 式與方程教案合集 幼兒教師教育網(wǎng)現(xiàn)在向你推薦式與方程教案,供有需要的朋友參考借鑒,希望可以幫助到你。教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,每個老師都需要將教案課件設(shè)計得更加完善。教案是讓學(xué)生更好地理解學(xué)科知識和發(fā)展全面能力的有效手段。...
    2023-04-15 閱讀全文
  • 分式方程教案范文 本文聚焦于與“分式方程教案”相關(guān)的主題,相信你能夠找到對自己有價值的資料。教案課件是老師工作當(dāng)中的一部分,每個老師對于寫教案課件都不陌生。教案是充分發(fā)揮教師主觀能動性和創(chuàng)造性的必要途徑。...
    2023-09-12 閱讀全文
  • 化學(xué)方程式課件范例 教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,每位老師應(yīng)該設(shè)計好自己的教案課件。教案是提高教學(xué)效果的重要手段。從多個角度來看“化學(xué)方程式課件”都有著引人深思的意義,感謝你留意我的作品我會繼續(xù)創(chuàng)作更有價值的故事!...
    2024-02-23 閱讀全文
  • 分式方程教案 這篇文章將為您展現(xiàn)“分式方程教案”的魅力和內(nèi)涵,僅供參考請您做好自我判斷。教案課件是每個老師在開學(xué)前需要準(zhǔn)備的東西,每個老師都要認(rèn)真寫教案課件。做好教案有利于教師更好地把握課堂氛圍。...
    2024-03-22 閱讀全文
  • 方程的意義教案范例 優(yōu)秀的人總是會提前做好準(zhǔn)備,幼兒園的老師都想教學(xué)工作能使小朋友們學(xué)到知識,為了更好的學(xué)習(xí),一般教師都會在授課前準(zhǔn)備教案,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識點。怎么才能讓幼兒園教案寫的更加全面呢?你不妨看看方程的意義教案范例,供大家借鑒和使用,希望大家分享!教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)教材五年級...
    2024-05-05 閱讀全文

幼兒教師教育網(wǎng)現(xiàn)在向你推薦式與方程教案,供有需要的朋友參考借鑒,希望可以幫助到你。教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,每個老師都需要將教案課件設(shè)計得更加完善。教案是讓學(xué)生更好地理解學(xué)科知識和發(fā)展全面能力的有效手段。...

2023-04-15 閱讀全文

本文聚焦于與“分式方程教案”相關(guān)的主題,相信你能夠找到對自己有價值的資料。教案課件是老師工作當(dāng)中的一部分,每個老師對于寫教案課件都不陌生。教案是充分發(fā)揮教師主觀能動性和創(chuàng)造性的必要途徑。...

2023-09-12 閱讀全文

教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,每位老師應(yīng)該設(shè)計好自己的教案課件。教案是提高教學(xué)效果的重要手段。從多個角度來看“化學(xué)方程式課件”都有著引人深思的意義,感謝你留意我的作品我會繼續(xù)創(chuàng)作更有價值的故事!...

2024-02-23 閱讀全文

這篇文章將為您展現(xiàn)“分式方程教案”的魅力和內(nèi)涵,僅供參考請您做好自我判斷。教案課件是每個老師在開學(xué)前需要準(zhǔn)備的東西,每個老師都要認(rèn)真寫教案課件。做好教案有利于教師更好地把握課堂氛圍。...

2024-03-22 閱讀全文

優(yōu)秀的人總是會提前做好準(zhǔn)備,幼兒園的老師都想教學(xué)工作能使小朋友們學(xué)到知識,為了更好的學(xué)習(xí),一般教師都會在授課前準(zhǔn)備教案,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識點。怎么才能讓幼兒園教案寫的更加全面呢?你不妨看看方程的意義教案范例,供大家借鑒和使用,希望大家分享!教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)教材五年級...

2024-05-05 閱讀全文