幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)教案11篇

發(fā)布時(shí)間:2023-09-22

高中數(shù)學(xué)教案。

老師都需要為每堂課準(zhǔn)備教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。教師制定教案需要深入了解學(xué)生群體?,F(xiàn)在小編將為您全面介紹“高中數(shù)學(xué)教案”的相關(guān)知識(shí)點(diǎn),歡迎大家閱讀本文但請(qǐng)注意僅供參考之用!

高中數(shù)學(xué)教案 篇1

教學(xué)目標(biāo)

(1)正確理解排列的意義。能利用樹(shù)形圖寫出簡(jiǎn)單問(wèn)題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問(wèn)題,寫出符合要求的排列數(shù);

(4)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

(5)通過(guò)對(duì)排列應(yīng)用問(wèn)題的學(xué)習(xí),讓學(xué)生通過(guò)對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

二、重點(diǎn)難點(diǎn)分析

本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問(wèn)題當(dāng)中。

從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。

公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。要重點(diǎn)分析好的推導(dǎo)。

排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過(guò)本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問(wèn)題的能力。

在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。

在教學(xué)排列應(yīng)用題時(shí),開(kāi)始應(yīng)要求學(xué)生寫解法要有簡(jiǎn)要的文字說(shuō)明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問(wèn)題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

三、教法建議

①在講解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。

②排列的定義中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

在定義中“一定順序”就是說(shuō)與位置有關(guān),在實(shí)際問(wèn)題中,要由具體問(wèn)題的性質(zhì)和條件來(lái)決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

在排列的定義中,如果有的書上叫選排列,如果,此時(shí)叫全排列。

要特別注意,不加特殊說(shuō)明,本章不研究重復(fù)排列問(wèn)題。

③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫錯(cuò)。這個(gè)公式的特點(diǎn)可見(jiàn)課本第229頁(yè)的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘?!边@實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。

公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):

(1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁(yè)例2就是用這個(gè)公式證明的問(wèn)題;

(2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

④建議應(yīng)充分利用樹(shù)形圖對(duì)問(wèn)題進(jìn)行分析,這樣比較直觀,便于理解。

⑤學(xué)生在開(kāi)始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡(jiǎn)要說(shuō)明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

高中數(shù)學(xué)教案 篇2

一、教學(xué)目標(biāo)

1.知識(shí)與技能

(1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。

(2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

2.過(guò)程與方法

學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。

3.情感態(tài)度與價(jià)值觀

(1)提高空間想象力與直觀感受。

(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn)、難點(diǎn):用斜二測(cè)畫法畫空間幾何值的直觀圖。

三、學(xué)法與教學(xué)用具

1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫法畫空間幾何體的過(guò)程。

2.教學(xué)用具:三角板、圓規(guī)

四、教學(xué)思路

(一)創(chuàng)設(shè)情景,揭示課題

1.我們都學(xué)過(guò)畫畫,這節(jié)課我們畫一物體:圓柱

把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。

2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知

1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。

練習(xí)反饋

根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法

(1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

4.平行投影與中心投影

投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

三、歸納整理

學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟

四、作業(yè)

1.書畫作業(yè),課本P17練習(xí)第5題

2.課外思考課本P16,探究(1)(2)

高中數(shù)學(xué)教案 篇3

一、激發(fā)學(xué)生興趣,讓學(xué)生產(chǎn)生學(xué)習(xí)的動(dòng)力

要想學(xué)好高中數(shù)學(xué),激發(fā)濃厚的興趣是最有效的手段。如何在數(shù)學(xué)學(xué)習(xí)中激發(fā)興趣,應(yīng)該從四方面來(lái)落實(shí)。一是重視數(shù)學(xué)基礎(chǔ)知識(shí)教學(xué)。有的學(xué)生認(rèn)為數(shù)學(xué)內(nèi)容很抽象,都是一些數(shù)字符號(hào),不容易理解,其實(shí)不然,數(shù)學(xué)知識(shí)是最基礎(chǔ)的知識(shí),是和我們的生活聯(lián)系非常緊密的知識(shí),數(shù)學(xué)就在我們的身邊,我們的生活離不開(kāi)數(shù)學(xué)。二是強(qiáng)化數(shù)學(xué)實(shí)踐應(yīng)用。許多學(xué)生對(duì)數(shù)學(xué)存在認(rèn)識(shí)上的誤區(qū),認(rèn)為學(xué)習(xí)數(shù)學(xué)沒(méi)有多大的用處,事實(shí)上,數(shù)學(xué)知識(shí)就充斥在我們生活的每一個(gè)角落,與我們的生活是密不可分的。只是以前的數(shù)學(xué)教學(xué)與實(shí)踐生活嚴(yán)重脫節(jié),造成學(xué)生認(rèn)為數(shù)學(xué)知識(shí)沒(méi)有多大用處。新數(shù)學(xué)課程改革下,數(shù)學(xué)教材有了全新的改革和發(fā)展,重視數(shù)學(xué)的實(shí)踐應(yīng)用,使學(xué)生能夠在數(shù)學(xué)學(xué)習(xí)中感受到數(shù)學(xué)的價(jià)值和魅力,從而熱愛(ài)數(shù)學(xué)。三是引入數(shù)學(xué)實(shí)驗(yàn)教學(xué)。數(shù)學(xué)并不只是課堂上教師的講解,還可以通過(guò)數(shù)學(xué)實(shí)驗(yàn)來(lái)激發(fā)學(xué)生的興趣,讓學(xué)生在實(shí)驗(yàn)教學(xué)中感受到數(shù)學(xué)的直觀性,使學(xué)生以探究者的身份參與到數(shù)學(xué)知識(shí)的研究中,從而讓學(xué)生在實(shí)驗(yàn)的過(guò)程中,獲得成功的喜悅。四是讓學(xué)生在攻克數(shù)學(xué)難關(guān)中獲得積極情感。數(shù)學(xué)知識(shí)具有寶貴的資源價(jià)值,學(xué)生可以在發(fā)現(xiàn)和創(chuàng)造中獲得積極的情感,數(shù)學(xué)之所以能夠吸引更多的人去探索和創(chuàng)新,就是因?yàn)樵跀?shù)學(xué)學(xué)習(xí)中,可以獲得成功的喜悅,激發(fā)學(xué)生的斗志。

二、教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生懂得怎樣學(xué)習(xí)

我們常說(shuō):“授人與魚,不如授人以漁。”這充分說(shuō)明了教學(xué)中方法的重要性,在教育教學(xué)中,教師不僅是要教給學(xué)生知識(shí),更重要的是教給學(xué)生學(xué)習(xí)的方法,它是學(xué)生獲得知識(shí)的重要法寶,學(xué)生只有在掌握方法的情況下,才能學(xué)會(huì)自己去學(xué)習(xí),從而獲得知識(shí)。因此,在新課程改革下,我們不但要讓學(xué)生“學(xué)會(huì)”,還要讓學(xué)生“會(huì)學(xué)”。首先,要教給學(xué)生“讀”的方法。有人認(rèn)為,高中數(shù)學(xué)教學(xué)用不到“讀”的方法。其實(shí),數(shù)學(xué)教學(xué)和其他學(xué)科一樣,同樣離不開(kāi)“讀”的方法,學(xué)生只有在讀的過(guò)程中才能理解數(shù)學(xué)問(wèn)題所包含的內(nèi)容,才會(huì)發(fā)現(xiàn)和歸納數(shù)學(xué)材料中所包含的深層次含義,使學(xué)生懂得抓住重點(diǎn)去思考問(wèn)題,從而為學(xué)生理解數(shù)字知識(shí)奠定良好基礎(chǔ)。其次,要引導(dǎo)學(xué)生“議”的思路。新的數(shù)學(xué)課程改革提出了合作、探究的學(xué)習(xí)方法,注重培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力。因此,在數(shù)學(xué)教學(xué)中,要鼓勵(lì)學(xué)生大膽發(fā)言,勇于探究討論,尤其對(duì)于那些有爭(zhēng)議的數(shù)學(xué)問(wèn)題,要引導(dǎo)學(xué)生積極探究,從而幫助學(xué)生在探究討論中提高能力。

第三,要讓學(xué)生學(xué)會(huì)思考。我國(guó)古代教育中就非常重視“思“的重要性,提出了“學(xué)而不思則罔”的重要論斷。在數(shù)學(xué)教學(xué)中,同樣要重點(diǎn)培養(yǎng)學(xué)生“思考”的品質(zhì),讓學(xué)生養(yǎng)成思考的良好習(xí)慣,學(xué)會(huì)辨析數(shù)學(xué)知識(shí)的難點(diǎn),理解數(shù)學(xué)知識(shí)的連貫性,從而增強(qiáng)學(xué)生的想象力,提高學(xué)生分析數(shù)學(xué)知識(shí)的能力和水平。

三、培養(yǎng)學(xué)生質(zhì)疑的能力,使學(xué)生敢于向權(quán)威挑戰(zhàn)

數(shù)學(xué)教學(xué)離不開(kāi)學(xué)生的質(zhì)疑,尤其是在新課程改革下,培養(yǎng)學(xué)生的質(zhì)疑能力,讓學(xué)生敢于質(zhì)疑,是提高數(shù)學(xué)教學(xué)效果的重要因素。在傳統(tǒng)的數(shù)學(xué)教學(xué)中,學(xué)生根本沒(méi)有質(zhì)疑的意識(shí),在解完一道題時(shí),總是沒(méi)有自信心,只能向教師或者權(quán)威的書籍求證,這樣就抑制了學(xué)生創(chuàng)新思維的發(fā)展,長(zhǎng)此下去,會(huì)讓學(xué)生沒(méi)有學(xué)習(xí)的激情。高中數(shù)學(xué)階段,應(yīng)該培養(yǎng)學(xué)生的質(zhì)疑能力,讓學(xué)生敢于向權(quán)威挑戰(zhàn),這對(duì)于提高學(xué)生的數(shù)學(xué)能力素質(zhì),培養(yǎng)學(xué)生的創(chuàng)新能力具有重要的意義。如果真的找出了“權(quán)威”的錯(cuò)誤,這對(duì)于學(xué)生來(lái)說(shuō)將是更大的鞭策。因此,在教學(xué)中教師要有意識(shí)地培養(yǎng)學(xué)生的質(zhì)疑能力,對(duì)于學(xué)生的一些新的發(fā)現(xiàn)、新的想法要及時(shí)予以鼓勵(lì),激發(fā)學(xué)生進(jìn)取的精神,讓學(xué)生在質(zhì)疑中提高數(shù)學(xué)學(xué)習(xí)的興趣,樹(shù)立數(shù)學(xué)學(xué)習(xí)的自信心。

四、教給學(xué)生學(xué)習(xí)的方法,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣

新的數(shù)學(xué)教材中,都有教法指導(dǎo)和學(xué)法滲透的內(nèi)容,如在每一章都編排了“做一做”“讀一讀”“想一想”等相關(guān)的知識(shí),其主要的目的就是讓學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)思考。因此,在教學(xué)中教師要注重學(xué)生學(xué)習(xí)方法指導(dǎo),讓學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。比如,讓學(xué)生學(xué)會(huì)讀題的方法。讀題并不是隨意閱讀,是讓學(xué)生在讀題中找到有價(jià)值的內(nèi)容,從而為進(jìn)一步解決問(wèn)題奠定基礎(chǔ)。如果學(xué)生在讀題中找到了相關(guān)的問(wèn)題,教師要及時(shí)予以鼓勵(lì),樹(shù)立學(xué)生學(xué)習(xí)的信心和勇氣,使學(xué)生在學(xué)習(xí)中感受到成功的喜悅,從而產(chǎn)生興趣,培養(yǎng)良好習(xí)慣。同時(shí),教師在教學(xué)中還要學(xué)會(huì)創(chuàng)設(shè)良好的學(xué)習(xí)情境,引發(fā)學(xué)生積極地去探究數(shù)學(xué)知識(shí),讓學(xué)生在教師所創(chuàng)設(shè)的情境中鍛煉能力,提高素質(zhì),從而為培養(yǎng)學(xué)生的良好習(xí)慣奠定基礎(chǔ)??傊?,高中數(shù)學(xué)教學(xué)是學(xué)生數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)。作為高中數(shù)學(xué)教師,一定要認(rèn)識(shí)到高中數(shù)學(xué)教學(xué)的重要性,不斷轉(zhuǎn)變教學(xué)觀念,樹(shù)立全新的數(shù)學(xué)教學(xué)思想,使數(shù)學(xué)知識(shí)能夠與我們的生活緊密聯(lián)系起來(lái),做到學(xué)以致用,讓學(xué)生在數(shù)學(xué)學(xué)習(xí)中感受到成功的喜悅,從而進(jìn)一步增強(qiáng)學(xué)生數(shù)學(xué)學(xué)習(xí)的主動(dòng)性,使學(xué)生在數(shù)學(xué)學(xué)習(xí)中各方面能力都能得到進(jìn)一步的提高。

小編推薦各科教學(xué)設(shè)計(jì):

、、、、、、、、、、、、

高中數(shù)學(xué)教案 篇4

一、概述

教材內(nèi)容:等比數(shù)列的概念和通項(xiàng)公式的推導(dǎo)及簡(jiǎn)單應(yīng)用 教材難點(diǎn):靈活應(yīng)用等比數(shù)列及通項(xiàng)公式解決一般問(wèn)題 教材重點(diǎn):等比數(shù)列的概念和通項(xiàng)公式

二、教學(xué)目標(biāo)分析

1. 知識(shí)目標(biāo)

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)

2.能力目標(biāo)

1)學(xué)會(huì)通過(guò)實(shí)例歸納概念

2)通過(guò)學(xué)習(xí)等比數(shù)列的通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)

3)提高數(shù)學(xué)建模的能力

3、情感目標(biāo):

1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型

2)體會(huì)數(shù)學(xué)是來(lái)源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活

3)數(shù)學(xué)是豐富多彩的而不是枯燥無(wú)味的

三、教學(xué)對(duì)象及學(xué)習(xí)需要分析

1、 教學(xué)對(duì)象分析:

1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對(duì)各方面的知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

2)對(duì)歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

2、學(xué)習(xí)需要分析:

四. 教學(xué)策略選擇與設(shè)計(jì)

1.課前復(fù)習(xí)

1)復(fù)習(xí)等差數(shù)列的概念及通向公式

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導(dǎo)入

高中數(shù)學(xué)教案全套篇2

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題.

教學(xué)重難點(diǎn)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題.

教學(xué)過(guò)程

等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.

【方法規(guī)律】

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問(wèn)題的基本數(shù)學(xué)思想和方法.

2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)

a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.

【示范舉例】

例1:

(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.

例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高中數(shù)學(xué)教案全套篇3

1.1.1 任意角

教學(xué)目標(biāo)

(一) 知識(shí)與技能目標(biāo)

理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.

(二) 過(guò)程與能力目標(biāo)

會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.

(三) 情感與態(tài)度目標(biāo)

1. 提高學(xué)生的推理能力;

2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)

任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點(diǎn)

終邊相同角的集合的表示;區(qū)間角的集合的書寫.

教學(xué)過(guò)程

一、引入:

1.回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

二、新課:

1.角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

②角的名稱:

③角的分類: A

正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角

④注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角.

⑤練習(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?

2.象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.

例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

答:分別為1、2、3、4、1、2象限角.

3.探究:教材P3面

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +

k·360° ,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無(wú)限個(gè),它們相差

360°的整數(shù)倍;

⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β

4.課堂小結(jié)

①角的定義;

②角的分類:

正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角

③象限角;

④終邊相同的角的表示法.

5.課后作業(yè):

①閱讀教材P2-P5;

②教材P5練習(xí)第1-5題;

③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

解:??角屬于第三象限,

? k·360°+180°

因此,2k·360°+360°

故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°

各是第幾象限角?

當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°

屬于第二象限角

當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°

屬于第四象限角

因此

屬于第二或第四象限角.

1.1.2弧度制

(一)

教學(xué)目標(biāo)

(二) 知識(shí)與技能目標(biāo)

理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).

(三) 過(guò)程與能力目標(biāo)

能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問(wèn)題

(四) 情感與態(tài)度目標(biāo)

通過(guò)新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過(guò)對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美. 教學(xué)重點(diǎn)

弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)

“角度制”與“弧度制”的區(qū)別與聯(lián)系.

教學(xué)過(guò)程

一、復(fù)習(xí)角度制:

初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來(lái)度量角的制度叫做角度制.

二、新課:

1.引 入:

由角度制的定義我們知道,角度是用來(lái)度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來(lái)不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

2.定 義

我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來(lái)度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

(2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):

①半圓所對(duì)的圓心角為

②整圓所對(duì)的圓心角為

③正角的弧度數(shù)是一個(gè)正數(shù).

④負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).

⑤零角的弧度數(shù)是零.

⑥角α的弧度數(shù)的絕對(duì)值|α|= .

4.角度與弧度之間的轉(zhuǎn)換:

①將角度化為弧度:

②將弧度化為角度:

5.常規(guī)寫法:

① 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).

② 弧度與角度不能混用.

弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.

例1.把67°30’化成弧度.

例2.把? rad化成度.

例3.計(jì)算:

(1)sin4

(2)tan1.5.

8.課后作業(yè):

①閱讀教材P6 –P8;

②教材P9練習(xí)第1、2、3、6題;

③教材P10面7、8題及B2、3題.

高中數(shù)學(xué)教案全套篇4

教學(xué)目標(biāo):

1、結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;

2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3、并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。

教學(xué)重點(diǎn):

通過(guò)實(shí)例理解分層抽樣的方法。

教學(xué)難點(diǎn):

分層抽樣的步驟。

教學(xué)過(guò)程:

一、問(wèn)題情境

1、復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是。即40,32,28。

三、建構(gòu)數(shù)學(xué)

1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。

2、三種抽樣方法對(duì)照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡(jiǎn)單隨機(jī)抽樣

抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3、分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分。

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。

(3)確定各層應(yīng)抽取的樣本容量。

(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本。

四、數(shù)學(xué)運(yùn)用

1、例題。

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________。

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格?,F(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”。

對(duì)這三件事,合適的抽樣方法為

A、分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

C、分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣

D、系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛(ài)

喜愛(ài)

一般

不喜愛(ài)

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5。

然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取。

答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人

數(shù)分別為12,23,20,5。

說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本。

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。

(3)由于學(xué)校各類人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、分層抽樣的概念與特征;

2、三種抽樣方法相互之間的區(qū)別與聯(lián)系。

高中數(shù)學(xué)教案全套篇5

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法.

教學(xué)過(guò)程:

【引入】

1.提問(wèn):什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問(wèn)題.

對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問(wèn)題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過(guò)方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問(wèn)題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),(節(jié)日祝福網(wǎng) zr120.COm)

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決.可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說(shuō)明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問(wèn)題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過(guò)程略.

【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說(shuō)得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡(jiǎn)形式;

(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明.

上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正.

下面再看一個(gè)問(wèn)題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡(jiǎn)得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡(jiǎn)得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問(wèn)題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

高中數(shù)學(xué)教案7

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

教學(xué)重點(diǎn):集合的基本概念及表示方法

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

授課類型:新授課

課時(shí)安排:1課時(shí)

教 具:多媒體、實(shí)物投影儀

內(nèi)容分析:

集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯。

本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說(shuō)明。

教學(xué)過(guò)程:

一、復(fù)習(xí)引入:

1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2、教材中的章頭引言;

3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問(wèn)題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號(hào)?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關(guān)概念:

由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

1、集合的概念

(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)

(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

2、常用數(shù)集及記法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N_或N+

(3)整數(shù)集:全體整數(shù)的集合 記作Z ,

(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0

(2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N_或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_

3、元素對(duì)于集合的隸屬關(guān)系

(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

(2)互異性:集合中的元素沒(méi)有重復(fù)

(3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗?

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫

三、練習(xí)題:

1、教材P5練習(xí)1、2

2、下列各組對(duì)象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù) (不確定)

(2)好心的人 (不確定)

(3)1,2,2,3,4,5.(有重復(fù))

3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )

(A)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

(1) 當(dāng)x∈N時(shí), x∈G;

(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0_ = a+b ∈G,即x∈G

證明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =且 不一定都是整數(shù),

∴ = 不一定屬于集合G

四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

2、集合元素的性質(zhì):確定性,互異性,無(wú)序性

3、常用數(shù)集的定義及記法

高中數(shù)學(xué)教案 篇5

知識(shí)技能:初步了解分散系概念;初步認(rèn)識(shí)膠體的概念,鑒別及凈化方法;了解膠體的制取方法。

能力培養(yǎng):通過(guò)丁達(dá)爾現(xiàn)象、膠體制取等實(shí)驗(yàn),培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力,思維能力和自學(xué)能力。

科學(xué)思想:通過(guò)實(shí)驗(yàn)、聯(lián)系實(shí)際等手段,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn):膠體的有關(guān)概念;學(xué)生實(shí)驗(yàn)?zāi)芰?、思維能力、自學(xué)能力的培養(yǎng)。

【展示】氯化鈉溶液、泥水懸濁液、植物油和水的混合液振蕩而成的乳濁液。

【提問(wèn)】哪種是溶液,哪種是懸濁液、乳濁液?

思考:

(1)分散系、分散質(zhì)和分散劑概念。

(2)溶液、懸濁液、乳濁液三種分散系中的分散質(zhì)分別是什么?

【提問(wèn)】溶液、懸濁液、乳濁液三種分散系有什么共同點(diǎn)和不同點(diǎn)?

觀察、辨認(rèn)、回答。

閱讀課本,找出三個(gè)概念。

(1)分散系:一種物質(zhì)(或幾種物質(zhì))分散到另一種物質(zhì)里形成的混合物。

(2)溶液中溶質(zhì)是分散質(zhì);懸濁液和乳濁液中的分散質(zhì)分別是:固體小顆粒和小液滴。

思考后得出結(jié)論:

共同點(diǎn):都是一種(或幾種)物質(zhì)的微粒分散于另一種物質(zhì)里形成的混合物。

復(fù)習(xí)舊知識(shí),從而引出新課。

培養(yǎng)自學(xué)能力,了解三個(gè)概念。

培養(yǎng)學(xué)生歸納比較能力,了解三種分散系的異同。

【展示】氫氧化鐵膠體,和氯化鈉溶液比較。

【提問(wèn)】?jī)烧咴谕獠刻卣魃嫌泻蜗嗨泣c(diǎn)?

【設(shè)問(wèn)】二者有無(wú)區(qū)別呢?

【指導(dǎo)實(shí)驗(yàn)】(投影)用有一小洞的厚紙圓筒(直徑比試管略大些),套在盛有氫氧化鐵溶膠的試管外面,用聚光手電筒照射小孔,從圓筒上方向下觀察,注意有何現(xiàn)象,用盛有氯化鈉溶液的試管做同樣的實(shí)驗(yàn),觀察現(xiàn)象。

【小結(jié)】丁達(dá)爾現(xiàn)象及其成因,并指出能發(fā)生丁達(dá)爾現(xiàn)象的是另一種分散系――膠體。

不同點(diǎn):溶液中分散質(zhì)微粒直徑小于10-9m,是均一、穩(wěn)定、透明的;濁液中分散質(zhì)微粒直徑大于10-7m,不均一、不穩(wěn)定,懸濁液靜置沉淀,乳濁液靜置易分層。

分組實(shí)驗(yàn)。

觀察實(shí)驗(yàn)現(xiàn)象。

現(xiàn)象:光束照射氫氧化鐵溶膠時(shí)產(chǎn)生一條光亮的“通路”,而照射氯化鈉溶液時(shí)無(wú)明顯現(xiàn)象。

培養(yǎng)觀察能力,引起學(xué)生注意,激發(fā)興趣。

培養(yǎng)學(xué)生動(dòng)手能力,觀察能力。

【設(shè)問(wèn)】通過(guò)以上的實(shí)驗(yàn),我們知道膠體有丁達(dá)爾現(xiàn)象,而溶液沒(méi)有。那么,二者本質(zhì)區(qū)別在什么地方呢?

【設(shè)問(wèn)】這個(gè)實(shí)驗(yàn)說(shuō)明什么問(wèn)題?

【小結(jié)】1.分子、離子等較小微粒能透過(guò)半透膜的微孔,膠體微粒不能透過(guò)半透膜,溶液和膠體的最本質(zhì)區(qū)別在于微粒的大小,分散質(zhì)微粒的直徑大小在10-9~10-7m之間的.分散系叫做膠體。從而引出膠體概念。

觀察實(shí)驗(yàn),敘述現(xiàn)象。

現(xiàn)象:在加入硝酸銀的試管里出現(xiàn)了白色沉淀;在加入碘水的試管里不發(fā)生變化。

思考后回答:氯化鈉可以透過(guò)半透膜的微孔,而淀粉膠體的微粒不能透過(guò)。

創(chuàng)設(shè)問(wèn)題情境,激發(fā)興趣。

培養(yǎng)思維能力。

【提問(wèn)】在日常生活中見(jiàn)到過(guò)哪些膠體?

討論,回答:淀粉膠體、土壤膠體、血液、云、霧、Al(OH)3膠體等等。

【指導(dǎo)閱讀】課本第74頁(yè)最后一行至第75頁(yè)第一段,思考膠體如何分類?

看書自學(xué),找出答案。

了解膠體分類。

【指導(dǎo)實(shí)驗(yàn)】強(qiáng)調(diào):1.制備上述膠體時(shí)要注意不斷攪拌,但不能用玻璃棒攪拌,否則會(huì)產(chǎn)生沉淀。2.在制取硅酸膠體時(shí),一定要將1mL水玻璃倒入5mL~10mL鹽酸中,切不可倒過(guò)來(lái)傾倒,否則

會(huì)產(chǎn)生硅酸凝膠。

【提問(wèn)】如何證實(shí)你所制得的是膠體?請(qǐng)你檢驗(yàn)一下你所制得的氫氧化鐵膠體。

分組實(shí)驗(yàn):

用燒杯盛約30mL蒸餾水,加熱到沸騰,然后逐滴加入飽和氯化鐵溶液,邊加邊振蕩,直至溶液變成紅褐色,即得氫氧化鐵膠體。

在一個(gè)大試管里裝入5~10mL1mol/L鹽酸,并加入1mL水玻璃,然后用力振蕩,即得硅酸溶膠。

在一個(gè)大試管里注入0.01mol/L碘化鉀溶液10mL,用膠頭滴管滴入8~10滴相同濃度的硝酸銀溶液,邊滴加邊振蕩,即得碘化銀膠體。

思考后回答,膠體可產(chǎn)生丁達(dá)爾現(xiàn)象,然后檢驗(yàn)。

培養(yǎng)學(xué)生實(shí)驗(yàn)?zāi)芰Α?/p>

培養(yǎng)學(xué)生嚴(yán)謹(jǐn)求實(shí),一絲不茍的科學(xué)態(tài)度。

使學(xué)生親自體驗(yàn)成功與失敗,激發(fā)興趣。

【提問(wèn)】請(qǐng)學(xué)生寫出制取三種膠體的化學(xué)方程式,請(qǐng)一個(gè)同學(xué)寫在黑板上,然后追問(wèn):這個(gè)同學(xué)書寫是否正確?

高中數(shù)學(xué)教案 篇6

【教學(xué)目標(biāo)】

1. 知識(shí)與技能

(1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:

(3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。

2.過(guò)程與方法

在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價(jià)值觀

通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

【教學(xué)重點(diǎn)】

①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式

【教學(xué)難點(diǎn)】

①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

【學(xué)情分析】

我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

【設(shè)計(jì)思路】

1.教法

①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

2.學(xué)法

引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

【教學(xué)過(guò)程】

一:創(chuàng)設(shè)情境,引入新課

1.從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

2.水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚.如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?

3.我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).

學(xué)生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數(shù)列有什么共同特點(diǎn)?

思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

(設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓住:“從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

三:舉一反三,鞏固定義

1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.

注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

四:利用定義,導(dǎo)出通項(xiàng)

1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.

(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

五:應(yīng)用通項(xiàng),解決問(wèn)題

1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)

教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)

六:反饋練習(xí):教材13頁(yè)練習(xí)1

七:歸納總結(jié):

1.一個(gè)定義:

等差數(shù)列的定義及定義表達(dá)式

2.一個(gè)公式:

等差數(shù)列的通項(xiàng)公式

3.二個(gè)應(yīng)用:

定義和通項(xiàng)公式的應(yīng)用

教師:讓學(xué)生思考整理,找?guī)讉€(gè)代表發(fā)言,最后教師給出補(bǔ)充

(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

【設(shè)計(jì)反思】

本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

高中數(shù)學(xué)教案 篇7

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

(教師活動(dòng))提出下列思考問(wèn)題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?

(學(xué)生活動(dòng))討論并回答.

[評(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.

設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的.上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.

[提出問(wèn)題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說(shuō)明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對(duì)照課文,逐一評(píng)析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.

(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).

[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.

(學(xué)生活動(dòng))傾聽(tīng)、思索、記錄.

(教師活動(dòng))提出思考問(wèn)題.

[投影] 與 的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.

(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

(學(xué)生活動(dòng))板演、示范.

(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學(xué)生活動(dòng))思考分析.

[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補(bǔ)充練習(xí)]

(學(xué)生活動(dòng))板演、解答.

設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

高中數(shù)學(xué)教案 篇8

課題:

等比數(shù)列的概念

教學(xué)目標(biāo)

1、通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

教學(xué)用具

投影儀,多媒體軟件,電腦、

教學(xué)方法

討論、談話法、

教學(xué)過(guò)程

一、提出問(wèn)題

給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn)、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列)、

二、講解新課

請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問(wèn)題、假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開(kāi)始有一個(gè)變形蟲,經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ)、

請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的.數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

2、對(duì)定義的認(rèn)識(shí)(板書)

(1)等比數(shù)列的首項(xiàng)不為0;

(2)等比數(shù)列的每一項(xiàng)都不為0,即

問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0、

用數(shù)學(xué)式子表示等比數(shù)列的定義、

是等比數(shù)列

①、在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成

,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫為

是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

3、等比數(shù)列的通項(xiàng)公式(板書)

問(wèn)題:用和表示第項(xiàng)

①不完全歸納法

②疊乘法,…,,這個(gè)式子相乘得,所以(板書)

(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書)

(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來(lái)說(shuō),最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已)、

這里強(qiáng)調(diào)方程思想解決問(wèn)題、方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

2、注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍?,比如紙?、001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了、還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。

高中數(shù)學(xué)教案 篇9

 一、基礎(chǔ)突破課本層面

其實(shí)很多同學(xué)在平時(shí)學(xué)習(xí)中也重視課本,概念公式也記住了但是任然感覺(jué)學(xué)習(xí)沒(méi)有多大效果,還不如多做兩道題目有意義,可是做題有無(wú)從思考,于是陷入了一個(gè)死循環(huán)。那么課本該怎么學(xué)呢?

①概念公式的拓展以及知識(shí)點(diǎn)之間的聯(lián)系

核心是概念的外延和概念之間的聯(lián)系,大家知道一般概念定理基本可以分成四塊:文字+圖形+式子+運(yùn)算,而一般的題目也是由這四塊文字+圖形+式子+運(yùn)算構(gòu)成的,這就是解題與課本學(xué)習(xí)之間的對(duì)應(yīng)的地方,所以概念學(xué)習(xí)就要從這四個(gè)方面入手挖掘突破,對(duì)于相關(guān)的學(xué)習(xí)挖掘方法我們給大家通過(guò)函數(shù)單調(diào)性做了一個(gè)簡(jiǎn)單示范,可參見(jiàn)樊瑞軍相關(guān)視頻講解。

②課本題型歸納

大家知道高中數(shù)學(xué)的課本題目根據(jù)難易程度有A,B兩組,這些題目都是經(jīng)過(guò)專家組慎重選擇的,并不是胡亂選擇的,而且高考試題的編制基本是通過(guò)課本深度改編的,所以我們?cè)趯W(xué)習(xí)過(guò)程中首先要進(jìn)行題型方面的歸納梳理,掌握這些題目的深層含義,并在后續(xù)的練習(xí)中不斷深化和補(bǔ)充題型,那么所謂的基礎(chǔ)題型基本就沒(méi)有問(wèn)題了。這就是課本學(xué)習(xí)中的第二個(gè)突破口基礎(chǔ)題型掌握,對(duì)于題型的梳理方法我們通過(guò)必修二直線與圓這部分給大家做了詳細(xì)示范,詳細(xì)可參見(jiàn)視頻講解。

③運(yùn)算提升

運(yùn)算是高中數(shù)學(xué)解題必須的一個(gè)過(guò)程,而且會(huì)直接關(guān)系到考試成績(jī)的好壞,但是運(yùn)算基本不會(huì)在課本直接呈現(xiàn),而是要通過(guò)解題不斷歸納總結(jié)梳理,樊瑞軍認(rèn)為高中數(shù)學(xué)運(yùn)算主要分四塊:

1、高中數(shù)學(xué)基本式子變形處理如整式類,分式類,根式類等;

2、初高中各類方程及方程組突破;

3、各類簡(jiǎn)單,復(fù)雜及含參不等式突破;

4、特殊類式子處理。

④圖形突破

圖形特別是函數(shù)圖形不僅在高考的選擇題中直接考察更是解答題中必備的,但高考的考察一般都要高于課本,這就需要在課本學(xué)習(xí)的基礎(chǔ)上進(jìn)行拓展,圖形突破主要包括畫圖,認(rèn)識(shí)圖形,圖形拓展方法,圖形處理及圖形計(jì)算五個(gè)方面。

考試層面

一般的考試試卷和高考真題都是我們學(xué)習(xí)最好的積累歸納素材,考試試卷不僅能幫助我們把握學(xué)習(xí)方向,更能夠檢查學(xué)習(xí)效果。

二、把握做題方向重視歸納解題思考方法

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過(guò)做題突破高考,對(duì)于絕大多數(shù)考生來(lái)說(shuō)確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的'重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見(jiàn)題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來(lái)臨的期中期末考試和未來(lái)的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒(méi)有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過(guò)做題突破高考,對(duì)于絕大多數(shù)考生來(lái)說(shuō)確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見(jiàn)題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來(lái)臨的期中期末考試和未來(lái)的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒(méi)有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

 三、時(shí)刻面向高考以高考為核心

不論我們是高一還是高二甚至是高三,高考都是我們最后的沖刺的目標(biāo),所以我們?cè)谄綍r(shí)的學(xué)習(xí)過(guò)程中要始終面向高考,經(jīng)常做高考題目,因?yàn)楦呖颊骖}在考查知識(shí)點(diǎn)時(shí)的切入點(diǎn),綜合程度以及題型與平時(shí)的練習(xí)題還是有一道差異,而且能幫助我們正確地的掌握高考知識(shí)點(diǎn)的難度和基本題型。我們平時(shí)的復(fù)習(xí)資料中,有相當(dāng)?shù)牧?xí)題已超出高考難度或者與高考方向偏離較大,針對(duì)這些題目我們可以舍棄,而集中精力突破真正我們?cè)撏黄频膬?nèi)容。

四、注重解題思路

學(xué)習(xí)數(shù)學(xué)核心在于如何思考,重視老師對(duì)該題目的分析和歸納,然而有很多同學(xué)往往忽視問(wèn)題的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過(guò)程。聽(tīng)課雖然認(rèn)真,但費(fèi)力,聽(tīng)完后滿腦子的計(jì)算過(guò)程,支離破碎。所以當(dāng)教師解答習(xí)題時(shí),學(xué)生要重視問(wèn)題的思考分析。另外,當(dāng)題目的答案給出時(shí),并不代表問(wèn)題的解答完畢,還要花一定的時(shí)間認(rèn)真總結(jié)、歸納理解。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問(wèn)題的經(jīng)驗(yàn)和技能。同時(shí)也解決了學(xué)生中會(huì)聽(tīng)課而不會(huì)做題目的壞毛病。

五、積累考試經(jīng)驗(yàn)

對(duì)于每一次考試和單元模擬要積累一定的考試經(jīng)驗(yàn),掌握一定的考試技巧,在每一次考試中要鍛煉自己的承受能力、接受能力、解決問(wèn)題以及應(yīng)對(duì)一些突發(fā)情況等綜合能力。只有在平時(shí)的考試中不斷總結(jié),那么在高考的考場(chǎng)上就會(huì)得心應(yīng)手,避免考試發(fā)揮失常等的發(fā)生。

六、歸納小題及解答題方法

高中數(shù)學(xué)考試中的選擇題、填空題是基礎(chǔ),共76分是整個(gè)考試得分的基礎(chǔ),在平時(shí)學(xué)習(xí)過(guò)程中不但要在會(huì)接的基礎(chǔ)上提高解題速度,還要?dú)w納總結(jié)選擇題的熱門題型,解題技巧等。

選擇題方法技巧主要通過(guò)選項(xiàng)布局特征,選擇題快速運(yùn)算技巧,選擇題題目特征與核心解法,選擇題中的結(jié)論這四個(gè)方面進(jìn)行歸納突破。

對(duì)于解答題而言高考的題型以及命題方式等都是非常成熟的,要在平時(shí)學(xué)習(xí)中對(duì)于解答題中的一般思考方法,熱門題型,基礎(chǔ)知識(shí)點(diǎn),體現(xiàn)的基本運(yùn)算,涵蓋的基本圖形以及書寫要點(diǎn)要求等六個(gè)方面進(jìn)行歸納,對(duì)于解題思考,運(yùn)算,圖形等相關(guān)方面我們?cè)谇懊娑甲隽艘恍┓治?,我們?cè)诤竺鎸⒗^續(xù)給大家總結(jié)歸納,相關(guān)可關(guān)注樊瑞軍微信公眾號(hào)或者個(gè)人微信號(hào),數(shù)學(xué)學(xué)科是能在短時(shí)間內(nèi)提高成績(jī)的一門學(xué)科,數(shù)學(xué)是高考中三科綜合科之中一門拉開(kāi)綜合成績(jī)的重要學(xué)科,學(xué)數(shù)學(xué)要重視方法,不能盲目隨波逐流。

七、制定好學(xué)習(xí)計(jì)劃和復(fù)習(xí)策略

學(xué)好數(shù)學(xué)要制定好計(jì)劃,不但要有高中三年的計(jì)劃,也要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計(jì)劃,計(jì)劃要與老師的復(fù)習(xí)計(jì)劃吻合,不能相互沖突,不要急于求成每一天甚至一星期全面突破一個(gè)考點(diǎn),研究該知識(shí)點(diǎn)考查的不同側(cè)面、不同角度以及高考的難度,不斷地歸納、反思、回顧,集中精力提前突破高考中的??键c(diǎn)和重難點(diǎn)。

預(yù)習(xí)

如果你想把數(shù)學(xué)學(xué)好,單純地做學(xué)校發(fā)的資料是遠(yuǎn)遠(yuǎn)不夠的。去學(xué)校旁邊買一本側(cè)重講解的參考書。在老師講課之前,先把課本中要學(xué)習(xí)的內(nèi)容看一遍(用心看),定義、公式可能記不住對(duì)嗎?對(duì),看著寫著,一遍不行再來(lái)一遍,把這些基礎(chǔ)弄清楚為止。之后看你買的參考書,這比課本上所講解的又深了一個(gè)層次,每講解一個(gè)知識(shí)點(diǎn),都會(huì)有一兩個(gè)例題??赐旰?,把課本、參考書上面的知識(shí)點(diǎn)再回顧一遍,做課本后面的習(xí)題。

聽(tīng)課

你的預(yù)習(xí)基本可以讓你明白90%了,至于課堂,有的放矢吧。你的選擇有很多,如果你的知識(shí)點(diǎn)掌握的已經(jīng)很好,你可以再進(jìn)行回顧,也可以自己找題做;如果你的知識(shí)點(diǎn)掌握的不是太好,你可以跟著老師再把知識(shí)點(diǎn)記憶一下。當(dāng)老師拓展新的知識(shí)點(diǎn)時(shí)要認(rèn)真聽(tīng),再聽(tīng)一下,加深理解。

復(fù)習(xí)

對(duì)于各科而言,復(fù)習(xí)都很重要。拿數(shù)學(xué)來(lái)說(shuō),好多同學(xué)認(rèn)為就是不斷的刷題。其實(shí)不然,當(dāng)你要做課后習(xí)題的時(shí)候,首先應(yīng)先溫習(xí)教材知識(shí)點(diǎn),之后看你的課本后面是否有做錯(cuò)的題目,如果有,再做一遍,最后就是找題做了。

高中數(shù)學(xué)教案 篇10

一、本節(jié)課內(nèi)容的數(shù)學(xué)本質(zhì)

本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會(huì)借助計(jì)算器用二分法求給定精確度的方程的近似解。通過(guò)探究讓學(xué)生體驗(yàn)從特殊到一般的認(rèn)識(shí)過(guò)程,滲透逐步逼近和無(wú)限逼近思想(極限思想),體會(huì)“近似是普遍的、精確則是特殊的”辯證唯物主義觀點(diǎn)。引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)理解有關(guān)內(nèi)容,通過(guò)求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會(huì)知識(shí)之間的聯(lián)系。

所以本節(jié)課的本質(zhì)是讓學(xué)生體會(huì)函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問(wèn)題的算法思想。

二、本節(jié)課內(nèi)容的地位、作用

“二分法”的理論依據(jù)是“函數(shù)零點(diǎn)的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點(diǎn)》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個(gè)前奏和準(zhǔn)備;同時(shí)滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。

三、學(xué)生情況分析

學(xué)生已初步理解了函數(shù)圖象與方程的根之間的`關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問(wèn)題的能力,這為理解函數(shù)零點(diǎn)附近的函數(shù)值符號(hào)提供了知識(shí)準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點(diǎn)的關(guān)系,對(duì)于高次方程、超越方程與對(duì)應(yīng)函數(shù)零點(diǎn)之間的聯(lián)系的認(rèn)識(shí)比較模糊,計(jì)算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。

四、教學(xué)目標(biāo)定位

根據(jù)教材內(nèi)容和學(xué)生的實(shí)際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:

通過(guò)具體實(shí)例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會(huì)用二分法求某些具體方程的近似解,從中體會(huì)函數(shù)與方程之間的聯(lián)系,體會(huì)程序化解決問(wèn)題的思想。

借助計(jì)算器用二分法求方程的近似解,讓學(xué)生充分體驗(yàn)近似的思想、逼近的思想和程序化地處理問(wèn)題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識(shí)準(zhǔn)備。

通過(guò)探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識(shí)。

通過(guò)具體問(wèn)題體會(huì)逼近過(guò)程,感受精確與近似的相對(duì)統(tǒng)一。

五、教學(xué)診斷分析

“二分法”的思想方法簡(jiǎn)便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識(shí)較少,算法流程比較簡(jiǎn)潔,便于編寫計(jì)算機(jī)程序;利用計(jì)算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗(yàn),所以易于被學(xué)生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。

六、教學(xué)方法和特點(diǎn)

本節(jié)課采用的是問(wèn)題驅(qū)動(dòng)、啟發(fā)探究的教學(xué)方法。

通過(guò)分組合作、互動(dòng)探究、搭建平臺(tái)、分散難點(diǎn)的學(xué)習(xí)指導(dǎo)方法把問(wèn)題逐步推進(jìn)、拾級(jí)而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。

本節(jié)課特點(diǎn)主要有以下幾方面:

1、以問(wèn)題驅(qū)動(dòng)教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。

2、注重與現(xiàn)實(shí)生活中案例相結(jié)合,讓學(xué)生體會(huì)數(shù)學(xué)來(lái)源于現(xiàn)實(shí)生活又可以解決現(xiàn)實(shí)生活中的問(wèn)題。

以李詠主持的幸運(yùn)52猜商品價(jià)格來(lái)創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測(cè)的過(guò)程中體會(huì)二分法思想。

3、注重學(xué)生參與知識(shí)的形成過(guò)程,使他們“聽(tīng)”有所思,“學(xué)”有所獲。

本節(jié)課中的每一個(gè)問(wèn)題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過(guò)程,培養(yǎng)合作交流意識(shí)。

4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。

本節(jié)課中利用計(jì)算器進(jìn)行了多次計(jì)算,逐步縮小實(shí)數(shù)解所在范圍,精確度的確定就顯得非常自然,突破了教學(xué)上的難點(diǎn),提高了探究活動(dòng)的有效性。整個(gè)課件都以PowerPoint為制作平臺(tái),演示Excel

程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。

七、預(yù)期效果分析

以方程的根與函數(shù)的零點(diǎn)知識(shí)作基礎(chǔ),通過(guò)對(duì)求方程近似解的探究討論,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng);采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動(dòng)形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。

另外盡管使用了科學(xué)計(jì)算器,但求一個(gè)方程的近似解也是很費(fèi)時(shí)的,學(xué)生容易出現(xiàn)計(jì)算錯(cuò)誤和產(chǎn)生急躁情緒;況且問(wèn)題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時(shí)間存在差異,教師要適時(shí)指導(dǎo)。

關(guān)于高中必修一數(shù)學(xué)教案

一、教材分析

“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來(lái),并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問(wèn)題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過(guò)對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數(shù)學(xué)問(wèn)題”的建模過(guò)程中,體驗(yàn) “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。

二、學(xué)情分析

我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

三、教學(xué)目標(biāo)

1、知識(shí)和技能:在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。

過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過(guò)平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

2、教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。

教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

四、教學(xué)方法與手段

為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問(wèn)題解決的過(guò)程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

五、教學(xué)過(guò)程

為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情景,揭示課題

問(wèn)題1:寧?kù)o的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

1671年兩個(gè)法國(guó)天文學(xué)家首次測(cè)出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?

問(wèn)題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機(jī)從山頂一過(guò)便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問(wèn)題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

[設(shè)計(jì)說(shuō)明]引用教材本章引言,制造知識(shí)與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。

(二)特殊入手,發(fā)現(xiàn)規(guī)律

問(wèn)題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問(wèn)題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來(lái)嗎?

引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。

(三)類比歸納,嚴(yán)格證明

問(wèn)題4:本題屬于初中問(wèn)題,而且比較簡(jiǎn)單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒(méi)有變,你說(shuō)這個(gè)結(jié)論還成立嗎?

[設(shè)計(jì)說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

高中必修一數(shù)學(xué)教案怎么做

一、教材分析

1.教學(xué)內(nèi)容

本節(jié)課內(nèi)容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。

2.教材的地位和作用

函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個(gè)基礎(chǔ)知識(shí)點(diǎn),是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問(wèn)題和解決問(wèn)題的能力。

3.教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵

教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個(gè)局部概念.

教學(xué)難點(diǎn):領(lǐng)會(huì)函數(shù)單調(diào)性的實(shí)質(zhì)與應(yīng)用,明確單調(diào)性是一個(gè)局部的概念。

教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過(guò)程.

4.學(xué)情分析

高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯?wèn)題情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來(lái)看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢(shì),所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢(shì);由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).

二、目標(biāo)分析

(一)知識(shí)目標(biāo):

1.知識(shí)目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡(jiǎn)單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間。

2.能力目標(biāo):通過(guò)證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗(yàn)和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會(huì)數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識(shí)聯(lián)系,增強(qiáng)學(xué)生對(duì)知識(shí)的主動(dòng)構(gòu)建的能力。

3.情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識(shí)的過(guò)程中體會(huì)成功的喜悅,以此激發(fā)求知__。領(lǐng)會(huì)用運(yùn)動(dòng)變化的觀點(diǎn)去觀察分析事物的方法。通過(guò)滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辨證唯物主義的思想教育。

(二)過(guò)程與方法

培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì),通過(guò)函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過(guò)多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解題的邏輯推理能力。

三、教法與學(xué)法

1.教學(xué)方法

在教學(xué)中,要注重展開(kāi)探索過(guò)程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢(shì)。本節(jié)課采用問(wèn)答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問(wèn)中自覺(jué)的發(fā)現(xiàn)新知,探究新知,并且加入激勵(lì)性的語(yǔ)言以提高學(xué)生的積極性,提高學(xué)生參與知識(shí)形成的全過(guò)程。

2.學(xué)習(xí)方法

自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。

四、過(guò)程分析

本節(jié)課的教學(xué)過(guò)程包括:?jiǎn)栴}情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個(gè)板塊。這里分別就其過(guò)程和設(shè)計(jì)意圖作一一分析。

(一)問(wèn)題情景:

為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計(jì)了多個(gè)生活背景問(wèn)題,并就圖表和圖象所提供的信息,提出一系列問(wèn)題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知__,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見(jiàn)課件)

新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強(qiáng)化學(xué)生的感性認(rèn)識(shí),從而達(dá)到學(xué)生對(duì)數(shù)學(xué)的理解。讓學(xué)生在課堂的一開(kāi)始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去關(guān)注生活。

(二)函數(shù)單調(diào)性的定義引入

1.幾何畫板動(dòng)畫演示,請(qǐng)學(xué)生認(rèn)真觀察,并回答問(wèn)題:通過(guò)學(xué)生已學(xué)過(guò)的函數(shù)y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。,進(jìn)行比較,分析其變化趨勢(shì)。并探討、回答以下問(wèn)題:

問(wèn)題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢(shì)?

問(wèn)題2:你能明確說(shuō)出“圖象呈上升趨勢(shì)”的意思嗎?

通過(guò)學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:

從在某一區(qū)間內(nèi)當(dāng)x的值增大時(shí),函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢(shì)再到如何用x與f(x)來(lái)描述上升的圖象?

通過(guò)問(wèn)題逐步向抽象的定義靠攏,將圖形語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)符號(hào)語(yǔ)言。幾何畫板的靈活使用,數(shù)形有機(jī)結(jié)合,引導(dǎo)學(xué)生從圖形語(yǔ)言到數(shù)學(xué)符號(hào)語(yǔ)言的翻譯變得輕松。

設(shè)計(jì)意圖:通過(guò)學(xué)生熟悉的知識(shí)引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時(shí)也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識(shí),增強(qiáng)學(xué)生自主學(xué)習(xí)、獨(dú)立思考,由學(xué)會(huì)向會(huì)學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。通過(guò)學(xué)生已學(xué)過(guò)的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。從學(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認(rèn)識(shí)入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。

(三)增函數(shù)、減函數(shù)的定義

在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語(yǔ)言來(lái)準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。

定義中的“當(dāng)x1x2時(shí),都有f(x1)

注意:(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;

(2)注意區(qū)間上所取兩點(diǎn)x1,x2的任意性;

(3)函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念。

讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。

設(shè)計(jì)意圖:通過(guò)給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實(shí)也叫做函數(shù)的增減性,它是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性的一般步驟。這樣處理,同時(shí)也是讓學(xué)生感悟、體驗(yàn)學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個(gè)性品質(zhì)。

(四)例題分析

在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。

2.例2.證明函數(shù)在區(qū)間(-∞,+∞)上是減函數(shù)。

在本題的解決過(guò)程中,要求學(xué)生對(duì)照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過(guò)自己的解決,總結(jié)證明單調(diào)性問(wèn)題的一般方法。

變式一:函數(shù)f(x)=-3x+b在R上是減函數(shù)嗎?為什么?

變式二:函數(shù)f(x)=kx+b(k

變式三:函數(shù)f(x)=kx+b(k

錯(cuò)誤:實(shí)質(zhì)上并沒(méi)有證明,而是使用了所要證明的結(jié)論

例題設(shè)計(jì)意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強(qiáng)化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識(shí),進(jìn)一步加深對(duì)概念的理解,同時(shí)也是依托具體問(wèn)題,對(duì)單調(diào)區(qū)間這一概念的再認(rèn)識(shí);要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進(jìn)行觀察是一種常用而又粗略的方法。嚴(yán)格地說(shuō),它需要根據(jù)單調(diào)函數(shù)的定義進(jìn)行證明。例2是教材練習(xí)題改編,通過(guò)師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號(hào)—下結(jié)論,通過(guò)例2的解決是學(xué)生初步掌握運(yùn)用概念進(jìn)行簡(jiǎn)單論證的基本方法,強(qiáng)化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問(wèn)題。目的是進(jìn)一步強(qiáng)化解題的規(guī)范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì)一些常見(jiàn)的變形方法。

(五)鞏固與探究

1.教材p36練習(xí)2,3

2.探究:二次函數(shù)的單調(diào)性有什么規(guī)律?

(幾何畫板演示,學(xué)生探究)本問(wèn)題作為機(jī)動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。

設(shè)計(jì)意圖:通過(guò)觀察圖象,對(duì)函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過(guò)推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問(wèn)題的一種常用數(shù)學(xué)方法。

通過(guò)課堂練習(xí)加深學(xué)生對(duì)概念的理解,進(jìn)一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達(dá)到鞏固,消化新知的目的。同時(shí)強(qiáng)化解題步驟,形成并提高解題能力。對(duì)練習(xí)的思考,讓學(xué)生學(xué)會(huì)反思、學(xué)會(huì)總結(jié)。

(六)回顧總結(jié)

通過(guò)師生互動(dòng),回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識(shí),同學(xué)們要切記:?jiǎn)握{(diào)性是對(duì)某個(gè)區(qū)間而言的,同時(shí)在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進(jìn)行判斷和證明。

設(shè)計(jì)意圖:通過(guò)小結(jié)突出本節(jié)課的重點(diǎn),并讓學(xué)生對(duì)所學(xué)知識(shí)的結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí),學(xué)會(huì)一些解決問(wèn)題的思想與方法,體會(huì)數(shù)學(xué)的和諧美。

(七)課外作業(yè)

1.教材p43習(xí)題1.3A組1(單調(diào)區(qū)間),2(證明單調(diào)性);

2.判斷并證明函數(shù)在上的單調(diào)性。

3.數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識(shí)和方法。

設(shè)計(jì)意圖:通過(guò)作業(yè)1、2進(jìn)一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強(qiáng)化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對(duì)本結(jié)內(nèi)容各項(xiàng)目標(biāo)落實(shí)的評(píng)價(jià)。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。

(七)板書設(shè)計(jì)(見(jiàn)ppt)

五、評(píng)價(jià)分析

有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計(jì)過(guò)程中注意了:第一.教要按照學(xué)的法子來(lái)教;第二在學(xué)生已有知識(shí)結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”;第三.強(qiáng)化了重探究、重交流、重過(guò)程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——?dú)w納總結(jié)”的活動(dòng)過(guò)程,體驗(yàn)了參與數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程,培養(yǎng)“用數(shù)學(xué)”的意識(shí)和能力,成為積極主動(dòng)的建構(gòu)者。

本節(jié)課圍繞教學(xué)重點(diǎn),針對(duì)教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識(shí)的發(fā)生和形成過(guò)程,使學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,__引趣,并注重?cái)?shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。

高中數(shù)學(xué)教案 篇11

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法.

教學(xué)過(guò)程:

【引入】

1.提問(wèn):什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問(wèn)題.

對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問(wèn)題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過(guò)方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問(wèn)題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決.可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說(shuō)明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問(wèn)題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過(guò)程略.

【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說(shuō)得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡(jiǎn)形式;

(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明.

上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正.

下面再看一個(gè)問(wèn)題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡(jiǎn)得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡(jiǎn)得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問(wèn)題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

高中數(shù)學(xué)教案模板?篇2

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

數(shù)列求和的綜合應(yīng)用

教學(xué)重難點(diǎn)

數(shù)列求和的綜合應(yīng)用

教學(xué)過(guò)程

典例分析

3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

(1)求{an}的通項(xiàng)公式

(2)求{|an|}的前n項(xiàng)和Tn

4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=

6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

(1)求{an}的通項(xiàng)公式

(2)令bn=anxn,求數(shù)列{bn}前n項(xiàng)和公式

7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

.已知數(shù)列{an},an∈N,Sn=(an+2)2

(1)求證{an}是等差數(shù)列

(2)若bn=an-30,求數(shù)列{bn}前n項(xiàng)的最小值

0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)

(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

11.購(gòu)買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買后1個(gè)月第1次付款,再過(guò)1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

12.某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

函數(shù)關(guān)系式是f(t)=銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是g(t)=-t/3+109/3(0≤t≤100)

求這種商品的日銷售額的最大值

注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過(guò)比較,確定最大值

高中數(shù)學(xué)教案模板?篇3

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問(wèn)題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語(yǔ)的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡(jiǎn)單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問(wèn)題能力:能對(duì)工作和生活中的簡(jiǎn)單數(shù)學(xué)相關(guān)問(wèn)題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問(wèn)題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第3單元函數(shù)(12學(xué)時(shí))

第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))

第5單元三角函數(shù)(18學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第9單元立體幾何(14學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

高中數(shù)學(xué)教案模板?篇4

教學(xué)目標(biāo):

1、結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;

2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3、并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。

教學(xué)重點(diǎn):

通過(guò)實(shí)例理解分層抽樣的方法。

教學(xué)難點(diǎn):

分層抽樣的步驟。

教學(xué)過(guò)程:

一、問(wèn)題情境

1、復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是。即40,32,28。

三、建構(gòu)數(shù)學(xué)

1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。

2、三種抽樣方法對(duì)照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡(jiǎn)單隨機(jī)抽樣

抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3、分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分。

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。

(3)確定各層應(yīng)抽取的樣本容量。

(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本。

四、數(shù)學(xué)運(yùn)用

1、例題。

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________。

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格。現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”。

對(duì)這三件事,合適的抽樣方法為

A、分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

C、分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣

D、系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛(ài)

喜愛(ài)

一般

不喜愛(ài)

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5。

然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取。

答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人

數(shù)分別為12,23,20,5。

說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本。

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。

(3)由于學(xué)校各類人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、分層抽樣的概念與特征;

2、三種抽樣方法相互之間的區(qū)別與聯(lián)系。

高中數(shù)學(xué)教案模板?篇5

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法.

教學(xué)過(guò)程:

【引入】

1.提問(wèn):什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問(wèn)題.

對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問(wèn)題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過(guò)方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問(wèn)題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決.可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說(shuō)明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問(wèn)題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過(guò)程略.

【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說(shuō)得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡(jiǎn)形式;

(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明.

上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正.

下面再看一個(gè)問(wèn)題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡(jiǎn)得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡(jiǎn)得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問(wèn)題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

感謝您閱讀“幼兒教師教育網(wǎng)”的《高中數(shù)學(xué)教案11篇》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問(wèn)題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了高中數(shù)學(xué)教案專題,希望您能喜歡!

相關(guān)推薦

  • 高中數(shù)學(xué)教案6篇 在我看來(lái)《高中數(shù)學(xué)教案》是眾多文章中的絕美之作。在老師日常工作中,教案課件也是其中一種,不過(guò)教案課件里知識(shí)點(diǎn)要設(shè)計(jì)好。教案是為加強(qiáng)教育教學(xué)團(tuán)隊(duì)建設(shè)和職業(yè)發(fā)展提供的有效支持。歡迎你參考,希望對(duì)你有所助益!...
    2023-04-30 閱讀全文
  • 高一數(shù)學(xué)課件教案匯總11篇 居安思危,思則有備,有備無(wú)患。幼兒園的老師都希望自己講的課學(xué)生們愛(ài)聽(tīng),能學(xué)習(xí)的更好,為了提升學(xué)生的學(xué)習(xí)效率,準(zhǔn)備教案是一個(gè)很好的選擇,有了教案上課才能夠?yàn)橥瑢W(xué)講更多的,更全面的知識(shí)。關(guān)于好的幼兒園教案要怎么樣去寫呢?下面是小編精心為你整理的“高一數(shù)學(xué)課件教案匯總11篇”,僅供參考,歡迎閱讀。重點(diǎn)難點(diǎn)...
    2023-04-13 閱讀全文
  • 數(shù)數(shù)中班教案系列11篇 教案課件在老師少不了一項(xiàng)工作事項(xiàng),只要課前把教案課件寫好就可以。?教案課件是建立教學(xué)框架的工具,必須認(rèn)真書寫,寫教案課件要具備哪些步驟?經(jīng)過(guò)搜索和整理,我們?yōu)榇蠹页噬蠑?shù)數(shù)中班教案,更多信息請(qǐng)繼續(xù)關(guān)注本網(wǎng)站!...
    2023-04-03 閱讀全文
  • 高中數(shù)學(xué)教案熱門六篇 俗話說(shuō),凡事預(yù)則立,不預(yù)則廢。優(yōu)質(zhì)課堂,就是幼兒園的老師在講學(xué)生在答,講的知識(shí)都能被學(xué)生吸收,為了更好的學(xué)習(xí),一般教師都會(huì)在授課前準(zhǔn)備教案,教案可以讓上課自己輕松的同時(shí),學(xué)生也更好的消化課堂內(nèi)容。寫好一份優(yōu)質(zhì)的幼兒園教案要怎么做呢?在這里,你不妨讀讀高中數(shù)學(xué)教案熱門六篇,請(qǐng)收藏并分享給你的朋友們吧!...
    2023-09-02 閱讀全文
  • 高中數(shù)學(xué)教案合集8篇 教師會(huì)將課本的主要教學(xué)內(nèi)容整理到教案課件中,現(xiàn)在是教師開(kāi)始編寫教案課件的時(shí)候。高效的教學(xué)水平可以體現(xiàn)在教師編寫的教案課件中,那么如何才能編寫出好的教案課件呢?請(qǐng)跟隨幼兒教師教育網(wǎng)的編輯的步伐一同了解“高中數(shù)學(xué)教案”,相信您參考后一定會(huì)有收獲!...
    2023-05-20 閱讀全文

在我看來(lái)《高中數(shù)學(xué)教案》是眾多文章中的絕美之作。在老師日常工作中,教案課件也是其中一種,不過(guò)教案課件里知識(shí)點(diǎn)要設(shè)計(jì)好。教案是為加強(qiáng)教育教學(xué)團(tuán)隊(duì)建設(shè)和職業(yè)發(fā)展提供的有效支持。歡迎你參考,希望對(duì)你有所助益!...

2023-04-30 閱讀全文

居安思危,思則有備,有備無(wú)患。幼兒園的老師都希望自己講的課學(xué)生們愛(ài)聽(tīng),能學(xué)習(xí)的更好,為了提升學(xué)生的學(xué)習(xí)效率,準(zhǔn)備教案是一個(gè)很好的選擇,有了教案上課才能夠?yàn)橥瑢W(xué)講更多的,更全面的知識(shí)。關(guān)于好的幼兒園教案要怎么樣去寫呢?下面是小編精心為你整理的“高一數(shù)學(xué)課件教案匯總11篇”,僅供參考,歡迎閱讀。重點(diǎn)難點(diǎn)...

2023-04-13 閱讀全文

教案課件在老師少不了一項(xiàng)工作事項(xiàng),只要課前把教案課件寫好就可以。?教案課件是建立教學(xué)框架的工具,必須認(rèn)真書寫,寫教案課件要具備哪些步驟?經(jīng)過(guò)搜索和整理,我們?yōu)榇蠹页噬蠑?shù)數(shù)中班教案,更多信息請(qǐng)繼續(xù)關(guān)注本網(wǎng)站!...

2023-04-03 閱讀全文

俗話說(shuō),凡事預(yù)則立,不預(yù)則廢。優(yōu)質(zhì)課堂,就是幼兒園的老師在講學(xué)生在答,講的知識(shí)都能被學(xué)生吸收,為了更好的學(xué)習(xí),一般教師都會(huì)在授課前準(zhǔn)備教案,教案可以讓上課自己輕松的同時(shí),學(xué)生也更好的消化課堂內(nèi)容。寫好一份優(yōu)質(zhì)的幼兒園教案要怎么做呢?在這里,你不妨讀讀高中數(shù)學(xué)教案熱門六篇,請(qǐng)收藏并分享給你的朋友們吧!...

2023-09-02 閱讀全文

教師會(huì)將課本的主要教學(xué)內(nèi)容整理到教案課件中,現(xiàn)在是教師開(kāi)始編寫教案課件的時(shí)候。高效的教學(xué)水平可以體現(xiàn)在教師編寫的教案課件中,那么如何才能編寫出好的教案課件呢?請(qǐng)跟隨幼兒教師教育網(wǎng)的編輯的步伐一同了解“高中數(shù)學(xué)教案”,相信您參考后一定會(huì)有收獲!...

2023-05-20 閱讀全文